Extremes of the standardized Gaussian noise

Let be a d-dimensional array of independent standard Gaussian random variables. For a finite set define . Let A be the number of elements in A. We prove that the appropriately normalized maximum of , where A ranges over all discrete cubes or rectangles contained in {1,...,n}d, converges in law to the Gumbel extreme-value distribution as n-->[infinity]. We also prove a continuous-time counterpart of this result.

[1]  D. Siegmund,et al.  Using the Generalized Likelihood Ratio Statistic for Sequential Detection of a Change-Point , 1995 .

[2]  L. Gordon,et al.  Two moments su ce for Poisson approx-imations: the Chen-Stein method , 1989 .

[3]  J. Albin On Extremal Theory for Stationary Processes , 1990 .

[4]  James Pickands,et al.  Asymptotic properties of the maximum in a stationary Gaussian process. , 1969 .

[5]  Q. Shao,et al.  On a conjecture of Revesz , 1995 .

[6]  Benjamin Yakir,et al.  Tail probabilities for the null distribution of scanning statistics , 1998 .

[7]  Thomas Mikosch,et al.  The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution , 2010, 1011.5718.

[8]  S. Berman A class of limiting distributions of high level excursions of Gaussian processes , 1972 .

[9]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[10]  Axel Munk,et al.  SHAO'S THEOREM ON THE MAXIMUM OF STANDARDIZED RANDOM WALK INCREMENTS FOR MULTIDIMENSIONAL ARRAYS , 2009 .

[11]  A. Munk,et al.  Exact Convergence Rate for the Maximum of Standardized Gaussian Increments , 2008 .

[12]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[13]  C. Qualls,et al.  Asymptotic Properties of Gaussian Processes , 1972 .

[14]  S. Berman Sojourns and Extremes of Stochastic Processes , 1992 .

[15]  J. Craggs Applied Mathematical Sciences , 1973 .

[16]  Vladimir I. Piterbarg,et al.  The Laplace method for probability measures in Banach spaces , 1995 .

[17]  D. Aldous Probability Approximations via the Poisson Clumping Heuristic , 1988 .

[18]  Hisao Watanabe,et al.  Asymptotic properties of Gaussian random fields , 1973 .

[19]  J. Husler Extreme Values and High Boundary Crossings of Locally Stationary Gaussian Processes , 1990 .

[20]  J. Steinebach On a conjecture of Révész and its analogue for renewal processes , 1998 .

[21]  Sojourns and Extremes of Gaussian Processes , 1974 .

[22]  P. Bickel,et al.  Two-Dimensional Random Fields , 1973 .

[23]  Vladimir I. Piterbarg,et al.  On the Distribution of the Maximum of a Gaus-sian Field with Constant Variance on a Smooth Manifold , 1996 .

[24]  Barbara Szyszkowicz,et al.  Asymptotic methods in probability and statistics : a volume in honour of Miklós Csörgö , 1998 .

[25]  Zakhar Kabluchko,et al.  Extreme-Value Analysis of Standardized Gaussian Increments , 2007, 0706.1849.

[26]  Holger Rootzén,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[27]  J. Pickands Upcrossing probabilities for stationary Gaussian processes , 1969 .

[28]  Simeon M. Berman,et al.  Maxima and high level excursions of stationary Gaussian processes , 1971 .

[29]  T. Lai,et al.  Maxima of asymptotically Gaussian random fields and moderate deviation approximations to boundary crossing probabilities of sums of random variables with multidimensional indices , 2004, math/0412428.