Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires.
暂无分享,去创建一个
M. Johnston | L. Herz | G. Tütüncüoğlu | A. Fontcuberta i Morral | S. Conesa‐Boj | J. Boland | C. Davies | J. Gong | G. Tütüncüoglu
[1] Hannah J. Joyce,et al. A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .
[2] P. J. van Veldhoven,et al. Boosting Solar Cell Photovoltage via Nanophotonic Engineering. , 2016, Nano letters.
[3] Chennupati Jagadish,et al. Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors. , 2016, Nano letters.
[4] Philippe Caroff,et al. Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires , 2016, Nature Communications.
[5] Feliciano Giustino,et al. Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.
[6] Hannah J Joyce,et al. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. , 2016, ACS nano.
[7] T. Salminen,et al. Te-doping of self-catalyzed GaAs nanowires , 2015 .
[8] L. Lauhon,et al. Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. , 2015, Nano letters.
[9] Anna Fontcuberta i Morral,et al. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. , 2015, Nano letters.
[10] Fan Wang,et al. Single nanowire photoconductive terahertz detectors. , 2015, Nano letters.
[11] W. Knap,et al. Terahertz photodetectors based on tapered semiconductor nanowires , 2014 .
[12] James J. Mudd,et al. Valence-band density of states and surface electron accumulation in epitaxial SnO2 films , 2014 .
[13] P. Kužel,et al. Terahertz conductivity in nanoscaled systems: effective medium theory aspects , 2014 .
[14] H. Němec,et al. Bulk-like transverse electron mobility in an array of heavily n -doped InP nanowires probed by terahertz spectroscopy , 2014 .
[15] J. Motohisa,et al. Characterizing the electron transport properties of a single 〈110〉 InAs nanowire , 2014 .
[16] F. Julien,et al. InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact. , 2014, Nano letters.
[17] A. Bertoni,et al. Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire. , 2014, Nano letters.
[18] E. Lörtscher,et al. Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress , 2014, Nature Communications.
[19] K. J. Jeong,et al. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. , 2014, Nano letters.
[20] H. Tan,et al. Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.
[21] P. Krogstrup,et al. Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.
[22] P. Krogstrup,et al. Doping incorporation paths in catalyst-free Be-doped GaAs nanowires , 2012, 1210.1670.
[23] K. Kavanagh,et al. p-type doping of GaAs nanowires using carbon , 2012 .
[24] Lars Samuelson,et al. Spatially resolved Hall effect measurement in a single semiconductor nanowire. , 2012, Nature nanotechnology.
[25] M. Ramsteiner,et al. Shell-doping of GaAs nanowires with Si for n-type conductivity , 2012, Nano Research.
[26] S. Reich,et al. Band gap of wurtzite GaAs , 2012 .
[27] T. Fukui,et al. A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.
[28] E. Ozbay,et al. Determination of the LO phonon energy by using electronic and optical methods in AlGaN/GaN , 2012 .
[29] Emanuele Uccelli,et al. Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. , 2012, Nanoscale.
[30] J. Harmand,et al. Conduction band structure in wurtzite GaAs nanowires: A resonant Raman scattering study , 2012 .
[31] Dominique Coquillat,et al. Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. , 2012, Nano letters.
[32] S. Kurtz,et al. Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.
[33] Jesper Wallentin,et al. Doping of semiconductor nanowires , 2011 .
[34] G. Abstreiter,et al. Free standing modulation doped core–shell GaAs/AlGaAs hetero‐nanowires , 2011 .
[35] W. Prost,et al. n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires , 2010, Nanoscale research letters.
[36] A. F. Morral,et al. Compensation mechanism in silicon-doped gallium arsenide nanowires , 2010 .
[37] M. Ramsteiner,et al. Incorporation of the dopants Si and Be into GaAs nanowires , 2010 .
[38] Kenji Hiruma,et al. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.
[39] A. Fontcuberta i Morral,et al. P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.
[40] D. Grützmacher,et al. MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires , 2010 .
[41] Chennupati Jagadish,et al. Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.
[42] Bozhi Tian,et al. Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .
[43] W. Prost,et al. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth , 2009 .
[44] D. Thompson,et al. GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.
[45] William L. Barnes,et al. Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons , 2008 .
[46] E. Bakkers,et al. Twinning superlattices in indium phosphide nanowires , 2008, Nature.
[47] P. Vogl,et al. nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.
[48] Shadi A Dayeh,et al. High electron mobility InAs nanowire field-effect transistors. , 2007, Small.
[49] V. Zwiller,et al. Single quantum dot nanowire LEDs. , 2007, Nano letters.
[50] Charles M Lieber,et al. Semiconductor nanowires , 2006 .
[51] William L. Barnes,et al. REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .
[52] Qingtao Zhou,et al. Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. , 2006, The journal of physical chemistry. B.
[53] Charles M. Lieber,et al. GaN nanowire lasers with low lasing thresholds , 2005 .
[54] Charles M. Lieber,et al. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.
[55] Peidong Yang,et al. Nanowire dye-sensitized solar cells , 2005, Nature materials.
[56] Sadao Adachi,et al. Gaas And Related Materials , 1994 .
[57] 安達 定雄. GaAs and related materials : bulk semiconducting and superlattice properties , 1994 .
[58] Kenji Hiruma,et al. GaAs p‐n junction formed in quantum wire crystals , 1992 .
[59] K. West,et al. Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs , 1989 .
[60] K. Ploog,et al. Shallow and deep donors in direct-gap n -type Al x Ga 1 − x A s : S i grown by molecular-beam epitaxy , 1984 .
[61] W. Walukiewicz,et al. Electron mobility in modulation-doped heterostructures , 1984 .
[62] Miyoko O. Watanabe,et al. Electron Activation Energy in Si-Doped AlGaAs Grown by MBE , 1984 .
[63] A. Gossard,et al. Dependence of electron mobility in modulation‐doped GaAs‐(AlGa)As heterojunction interfaces on electron density and Al concentration , 1981 .
[64] Temperature Dependence of Electron Mobility in GaAs , 1965 .