Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires.

Precise control over the electrical conductivity of semiconductor nanowires is a crucial prerequisite for implementation of these nanostructures into novel electronic and optoelectronic devices. Advances in our understanding of doping mechanisms in nanowires and their influence on electron mobility and radiative efficiency are urgently required. Here, we investigate the electronic properties of n-type modulation doped GaAs/AlGaAs nanowires via optical pump terahertz (THz) probe spectroscopy and photoluminescence spectroscopy over the temperature range 5 K-300 K. We directly determine an ionization energy of 6.7 ± 0.5 meV (T = 52 K) for the Si donors within the AlGaAs shell that create the modulation doping structure. We further elucidate the temperature dependence of the electron mobility, photoconductivity lifetime and radiative efficiency, and determine the charge-carrier scattering mechanisms that limit electron mobility. We show that below the donor ionization temperature, charge scattering is limited by interactions with interfaces, leading to an excellent electron mobility of 4360 ± 380 cm2 V-1 s-1 at 5 K. Above the ionization temperature, polar scattering via longitudinal optical (LO) phonons dominates, leading to a room temperature mobility of 2220 ± 130 cm2 V-1 s-1. In addition, we show that the Si donors effectively passivate interfacial trap states in the nanowires, leading to prolonged photoconductivity lifetimes with increasing temperature, accompanied by an enhanced radiative efficiency that exceeds 10% at room temperature.

[1]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[2]  P. J. van Veldhoven,et al.  Boosting Solar Cell Photovoltage via Nanophotonic Engineering. , 2016, Nano letters.

[3]  Chennupati Jagadish,et al.  Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors. , 2016, Nano letters.

[4]  Philippe Caroff,et al.  Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires , 2016, Nature Communications.

[5]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[6]  Hannah J Joyce,et al.  Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping. , 2016, ACS nano.

[7]  T. Salminen,et al.  Te-doping of self-catalyzed GaAs nanowires , 2015 .

[8]  L. Lauhon,et al.  Demonstration of Confined Electron Gas and Steep-Slope Behavior in Delta-Doped GaAs-AlGaAs Core-Shell Nanowire Transistors. , 2015, Nano letters.

[9]  Anna Fontcuberta i Morral,et al.  Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility. , 2015, Nano letters.

[10]  Fan Wang,et al.  Single nanowire photoconductive terahertz detectors. , 2015, Nano letters.

[11]  W. Knap,et al.  Terahertz photodetectors based on tapered semiconductor nanowires , 2014 .

[12]  James J. Mudd,et al.  Valence-band density of states and surface electron accumulation in epitaxial SnO2 films , 2014 .

[13]  P. Kužel,et al.  Terahertz conductivity in nanoscaled systems: effective medium theory aspects , 2014 .

[14]  H. Němec,et al.  Bulk-like transverse electron mobility in an array of heavily n -doped InP nanowires probed by terahertz spectroscopy , 2014 .

[15]  J. Motohisa,et al.  Characterizing the electron transport properties of a single 〈110〉 InAs nanowire , 2014 .

[16]  F. Julien,et al.  InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact. , 2014, Nano letters.

[17]  A. Bertoni,et al.  Unintentional high-density p-type modulation doping of a GaAs/AlAs core-multishell nanowire. , 2014, Nano letters.

[18]  E. Lörtscher,et al.  Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress , 2014, Nature Communications.

[19]  K. J. Jeong,et al.  Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. , 2014, Nano letters.

[20]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[21]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[22]  P. Krogstrup,et al.  Doping incorporation paths in catalyst-free Be-doped GaAs nanowires , 2012, 1210.1670.

[23]  K. Kavanagh,et al.  p-type doping of GaAs nanowires using carbon , 2012 .

[24]  Lars Samuelson,et al.  Spatially resolved Hall effect measurement in a single semiconductor nanowire. , 2012, Nature nanotechnology.

[25]  M. Ramsteiner,et al.  Shell-doping of GaAs nanowires with Si for n-type conductivity , 2012, Nano Research.

[26]  S. Reich,et al.  Band gap of wurtzite GaAs , 2012 .

[27]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[28]  E. Ozbay,et al.  Determination of the LO phonon energy by using electronic and optical methods in AlGaN/GaN , 2012 .

[29]  Emanuele Uccelli,et al.  Mobility and carrier density in p-type GaAs nanowires measured by transmission Raman spectroscopy. , 2012, Nanoscale.

[30]  J. Harmand,et al.  Conduction band structure in wurtzite GaAs nanowires: A resonant Raman scattering study , 2012 .

[31]  Dominique Coquillat,et al.  Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors. , 2012, Nano letters.

[32]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[33]  Jesper Wallentin,et al.  Doping of semiconductor nanowires , 2011 .

[34]  G. Abstreiter,et al.  Free standing modulation doped core–shell GaAs/AlGaAs hetero‐nanowires , 2011 .

[35]  W. Prost,et al.  n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires , 2010, Nanoscale research letters.

[36]  A. F. Morral,et al.  Compensation mechanism in silicon-doped gallium arsenide nanowires , 2010 .

[37]  M. Ramsteiner,et al.  Incorporation of the dopants Si and Be into GaAs nanowires , 2010 .

[38]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[39]  A. Fontcuberta i Morral,et al.  P-doping mechanisms in catalyst-free gallium arsenide nanowires. , 2010, Nano letters.

[40]  D. Grützmacher,et al.  MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires , 2010 .

[41]  Chennupati Jagadish,et al.  Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. , 2009, Nano letters.

[42]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[43]  W. Prost,et al.  Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth , 2009 .

[44]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[45]  William L. Barnes,et al.  Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons , 2008 .

[46]  E. Bakkers,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[47]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[48]  Shadi A Dayeh,et al.  High electron mobility InAs nanowire field-effect transistors. , 2007, Small.

[49]  V. Zwiller,et al.  Single quantum dot nanowire LEDs. , 2007, Nano letters.

[50]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[51]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[52]  Qingtao Zhou,et al.  Synthesis and characterization of indium-doped ZnO nanowires with periodical single-twin structures. , 2006, The journal of physical chemistry. B.

[53]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[54]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[55]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[56]  Sadao Adachi,et al.  Gaas And Related Materials , 1994 .

[57]  安達 定雄 GaAs and related materials : bulk semiconducting and superlattice properties , 1994 .

[58]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[59]  K. West,et al.  Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs , 1989 .

[60]  K. Ploog,et al.  Shallow and deep donors in direct-gap n -type Al x Ga 1 − x A s : S i grown by molecular-beam epitaxy , 1984 .

[61]  W. Walukiewicz,et al.  Electron mobility in modulation-doped heterostructures , 1984 .

[62]  Miyoko O. Watanabe,et al.  Electron Activation Energy in Si-Doped AlGaAs Grown by MBE , 1984 .

[63]  A. Gossard,et al.  Dependence of electron mobility in modulation‐doped GaAs‐(AlGa)As heterojunction interfaces on electron density and Al concentration , 1981 .

[64]  Temperature Dependence of Electron Mobility in GaAs , 1965 .