Robust 3D Object Detection from LiDAR Point Cloud Data with Spatial Information Aggregation

[1]  Fernando García,et al.  BirdNet: A 3D Object Detection Framework from LiDAR Information , 2018, 2018 21st International Conference on Intelligent Transportation Systems (ITSC).

[2]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[3]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[5]  Jason Yosinski,et al.  An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution , 2018, NeurIPS.

[6]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Kurt Keutzer,et al.  SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[9]  S LewMichael,et al.  Deep learning for visual understanding , 2016 .

[10]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[11]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Xindong Wu,et al.  Object Detection With Deep Learning: A Review , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[13]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Shu Wang,et al.  Multispectral Deep Neural Networks for Pedestrian Detection , 2016, BMVC.

[16]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Michael S. Lew,et al.  Deep learning for visual understanding: A review , 2016, Neurocomputing.

[18]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[19]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).