Isogeometric analysis for nonlinear planar Kirchhoff rods: Weighted residual formulation and collocation of the strong form

Abstract High-order shape functions used in isogeometric analysis allow the direct solution not only to the weighted residual formulation of the strong form, opening the door to new integration schemes (e.g. reduced Gauss–Lobatto quadrature, integration at superconvergent sites) but also to collocation approaches (e.g. using Greville or superconvergent collocation points). The goal of the present work is to compare these different methods through the application to the planar Kirchhoff rod, a fourth-order rotation-free formulation used to model slender beams under large deformations. Robustness of the geometrically-nonlinear solution is improved using the Mixed Integration Point (MIP) Newton, a method that combines the advantages of displacement and mixed formulations. Based on the observations of the convergence plots, convergence order estimates are provided for each discretization method. Advantages and weaknesses in terms of robustness and computation cost are also discussed for a set of benchmarks.

[1]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[2]  G. Garcea,et al.  An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells , 2018 .

[3]  Francesco Liguori,et al.  An isogeometric formulation of the Koiter’s theory for buckling and initial post-buckling analysis of composite shells , 2018, Computer Methods in Applied Mechanics and Engineering.

[4]  Luca Dedè,et al.  B-spline goal-oriented error estimators for geometrically nonlinear rods , 2012 .

[5]  Alfio Quarteroni,et al.  Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .

[6]  Laura De Lorenzis,et al.  Reduced integration at superconvergent points in isogeometric analysis , 2018 .

[7]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[8]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[9]  Matti Ristinmaa,et al.  Behaviour of the extensible elastica solution , 2001 .

[10]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[11]  W. Desmet,et al.  Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models , 2019 .

[12]  Alessandro Reali,et al.  A displacement-free formulation for the Timoshenko beam problem and a corresponding isogeometric collocation approach , 2018 .

[13]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[14]  Dominik Schillinger,et al.  Isogeometric collocation for phase-field fracture models , 2015 .

[15]  Domenico Magisano,et al.  How to improve efficiency and robustness of the Newton method in geometrically non-linear structural problem discretized via displacement-based finite elements , 2017 .

[16]  Thomas J. R. Hughes,et al.  Isogeometric collocation for large deformation elasticity and frictional contact problems , 2015 .

[17]  Giancarlo Sangalli,et al.  Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.

[18]  John A. Evans,et al.  Isogeometric collocation: Neumann boundary conditions and contact , 2015 .

[19]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[20]  Domenico Magisano,et al.  Advantages of the mixed format in geometrically nonlinear analysis of beams and shells using solid finite elements , 2017 .

[21]  Dominik Schillinger,et al.  Lagrange extraction and projection for spline basis functions: a direct link between isogeometric and standard nodal finite element formulations , 2014 .

[22]  Dominik Schillinger,et al.  A collocated isogeometric finite element method based on Gauss–Lobatto Lagrange extraction of splines , 2017 .

[23]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[24]  Alessandro Spadoni,et al.  Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications , 2015 .

[25]  Hongzhi Zhong,et al.  Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory , 2013 .

[26]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[27]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[28]  Alessandro Reali,et al.  Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .

[29]  E. Reissner,et al.  On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .

[30]  Jen-San Chen,et al.  Static snapping load of a hinged extensible elastica , 2013 .

[31]  Johannes Gerstmayr,et al.  A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: the case of plane deformations of originally straight Bernoulli–Euler beams , 2009 .

[32]  Alessandro Reali,et al.  Isogeometric collocation using analysis-suitable T-splines of arbitrary degree , 2016 .

[33]  Enzo Marino,et al.  Isogeometric collocation for the Reissner–Mindlin shell problem , 2017 .

[34]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[35]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[36]  Wim Desmet,et al.  Isogeometric collocation for Kirchhoff-Love plates and shells , 2018 .

[37]  Sai-Kit Yeung,et al.  Isogeometric collocation methods for Cosserat rods and rod structures , 2017 .

[38]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[39]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[40]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[41]  Yuri Bazilevs,et al.  Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .

[42]  E. Reissner On one-dimensional finite-strain beam theory: The plane problem , 1972 .

[43]  K. S. Nanjunda Rao,et al.  Bending analysis of laminated composite plates using isogeometric collocation method , 2017 .

[44]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[45]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[46]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[47]  Thomas J. R. Hughes,et al.  A collocated C0 finite element method: Reduced quadrature perspective, cost comparison with standard finite elements, and explicit structural dynamics , 2015 .

[48]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[49]  Josef Kiendl,et al.  An isogeometric collocation method for frictionless contact of Cosserat rods , 2017 .

[50]  Alessandro Reali,et al.  Non-prismatic Timoshenko-like beam model: Numerical solution via isogeometric collocation , 2017, Comput. Math. Appl..

[51]  Hans Irschik,et al.  Large deformation and stability of an extensible elastica with an unknown length , 2011 .

[52]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[53]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[54]  A. Humer Exact solutions for the buckling and postbuckling of shear-deformable beams , 2013 .