The influence of biodegradable magnesium implants on the growth plate.

[1]  S. Stanzl-Tschegg,et al.  Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50. , 2016, Acta biomaterialia.

[2]  P. Uggowitzer,et al.  Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg-5Zn-0.3Ca alloys. , 2015, Acta biomaterialia.

[3]  P. Uggowitzer,et al.  High-Strength Low-Alloy (HSLA) Mg–Zn–Ca Alloys with Excellent Biodegradation Performance , 2014 .

[4]  P. Uggowitzer,et al.  Immunological Response to Biodegradable Magnesium Implants , 2014 .

[5]  M. Sarntinoranont,et al.  Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications. , 2012, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  B. Ruozi,et al.  Application of poly-L-lactide screws in flat foot surgery: histological and radiological aspects of bio-absorption of degradable devices. , 2012, Histology and histopathology.

[7]  P. Uggowitzer,et al.  Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. , 2012, Acta biomaterialia.

[8]  S. Hajdu,et al.  The effect of drilling and screw fixation of the growth plate—an experimental study in rabbits , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[9]  W. Dockery,et al.  Long-term degradation of a poly-lactide co-glycolide/β-tricalcium phosphate biocomposite interference screw. , 2011, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[10]  M. Kietzmann,et al.  Effects of Degradable Mg-Ca Alloys on Dendritic Cell Function , 2011, Journal of biomaterials applications.

[11]  Frank Witte,et al.  Histology and research at the hard tissue-implant interface using Technovit 9100 New embedding technique. , 2010, Acta biomaterialia.

[12]  M. Leeflang,et al.  In vitro degradation behavior and cytocompatibility of Mg–Zn–Zr alloys , 2010, Journal of materials science. Materials in medicine.

[13]  P. Uggowitzer,et al.  On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. , 2010, Acta biomaterialia.

[14]  C. Phornphutkul,et al.  Disorders of the growth plate , 2009, Current opinion in endocrinology, diabetes, and obesity.

[15]  P. Uggowitzer,et al.  MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. , 2009, Nature materials.

[16]  P. Uggowitzer,et al.  Design strategy for new biodegradable Mg–Y–Zn alloys for medical applications , 2009 .

[17]  P. Papagelopoulos,et al.  Early Experience with Biodegradable Implants in Pediatric Patients , 2009, Clinical orthopaedics and related research.

[18]  S. Porat,et al.  Close reduction and intramedullary flexible titanium nails fixation of femoral shaft fractures in children under 5 years of age , 2006, Journal of pediatric orthopedics. Part B.

[19]  David Williams,et al.  New interests in magnesium. , 2006, Medical device technology.

[20]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[21]  S. Porat,et al.  Removal of Flexible Titanium Nails in Children , 2006, Journal of pediatric orthopedics.

[22]  I. Jackson,et al.  Transphyseal Bioabsorbable Screws Cause Temporary Growth Retardation in Rabbit Femur , 2005, Journal of pediatric orthopedics.

[23]  P. Griss,et al.  The Blood Supply of the Growth Plate and the Epiphysis: A Comparative Scanning Electron Microscopy and Histological Experimental Study in Growing Sheep , 2002, Calcified Tissue International.

[24]  M. F. Koskinen,et al.  Posttraumatic growth-plate abnormalities: MR imaging of bony-bridge formation in rabbits. , 1990, Radiology.

[25]  L. Morris,et al.  Statistical Analysis of the Incidence of Physeal Injuries , 1987, Journal of pediatric orthopedics.

[26]  O. Böstman,et al.  BIODEGRADABLE IMPLANTS IN FRACTURE FIXATION: EARLY RESULTS OF TREATMENT OF FRACTURES OF THE ANKLE , 1985, The Lancet.

[27]  P. Törmälä,et al.  Bioabsorbable screw fixation for the treatment of ankle fractures , 2007, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[28]  B. Olsen,et al.  Bone development. , 2000, Annual review of cell and developmental biology.

[29]  F. Shapiro Epiphyseal disorders. , 1987, The New England journal of medicine.

[30]  E. Nordentoft Experimental epiphyseal injuries. Grading of traumas and attempts at treating traumatic epiphyseal arrest in animals. , 1969, Acta orthopaedica Scandinavica.