Statistical Analysis of Persistence Intensity Functions

Persistence diagrams are two-dimensional plots that summarize the topological features of functions and are an important part of topological data analysis. A problem that has received much attention is how deal with sets of persistence diagrams. How do we summarize them, average them or cluster them? One approach -- the persistence intensity function -- was introduced informally by Edelsbrunner, Ivanov, and Karasev (2012). Here we provide a modification and formalization of this approach. Using the persistence intensity function, we can visualize multiple diagrams, perform clustering and conduct two-sample tests.

[1]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[3]  Герберт Эдельсбруннер,et al.  Current Open Problems in Discrete and Computational Geometry , 2015 .

[4]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[5]  Frédéric Chazal,et al.  Stochastic convergence of persistence landscapes and silhouettes , 2015, J. Comput. Geom..

[6]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[7]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[8]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[9]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[10]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[11]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[12]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[13]  Marston Morse The Foundations of a Theory of the Calculus of Variations in the Large in m-Space (Second Paper) , 1930 .

[14]  Nataša Jonoska,et al.  Discrete and Topological Models in Molecular Biology , 2014, Natural Computing Series.

[15]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[16]  Frédéric Chazal,et al.  On the Bootstrap for Persistence Diagrams and Landscapes , 2013, ArXiv.

[17]  Tegan Emerson,et al.  Persistence Images: An Alternative Persistent Homology Representation , 2015, ArXiv.

[18]  M. Morse Relations between the critical points of a real function of $n$ independent variables , 1925 .

[19]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[20]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[21]  Pratyush Pranav Persistent holes in the Universe : A hierarchical topology of the cosmic mass distribution , 2015 .

[22]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[23]  Frédéric Chazal,et al.  Robust Topological Inference: Distance To a Measure and Kernel Distance , 2014, J. Mach. Learn. Res..

[24]  Sayan Mukherjee,et al.  Fréchet Means for Distributions of Persistence Diagrams , 2012, Discrete & Computational Geometry.

[25]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[26]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[27]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[28]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[29]  Radmila Sazdanovic,et al.  Simplicial Models and Topological Inference in Biological Systems , 2014, Discrete and Topological Models in Molecular Biology.