Fast bilateral filtering for the display of high-dynamic-range images

We present a new technique for the display of high-dynamic-range images, which reduces the contrast while preserving detail. It is based on a two-scale decomposition of the image into a base layer, encoding large-scale variations, and a detail layer. Only the base layer has its contrast reduced, thereby preserving detail. The base layer is obtained using an edge-preserving filter called the bilateral filter. This is a non-linear filter, where the weight of each pixel is computed using a Gaussian in the spatial domain multiplied by an influence function in the intensity domain that decreases the weight of pixels with large intensity differences. We express bilateral filtering in the framework of robust statistics and show how it relates to anisotropic diffusion. We then accelerate bilateral filtering by using a piecewise-linear approximation in the intensity domain and appropriate subsampling. This results in a speed-up of two orders of magnitude. The method is fast and requires no parameter setting.

[1]  Michael Elad,et al.  On the origin of the bilateral filter and ways to improve it , 2002, IEEE Trans. Image Process..

[2]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[3]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[4]  Jessica K. Hodgins,et al.  Two methods for display of high contrast images , 1999, TOGS.

[5]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[6]  Frédo Durand,et al.  A gentle introduction to bilateral filtering and its applications , 2007, SIGGRAPH Courses.

[7]  Danny Barash,et al.  A Fundamental Relationship between Bilateral Filtering, Adaptive Smoothing, and the Nonlinear Diffusion Equation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Paul E. Debevec,et al.  Real-Time High Dynamic Range Texture Mapping , 2001, Rendering Techniques.

[9]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[11]  Greg Turk,et al.  LCIS: a boundary hierarchy for detail-preserving contrast reduction , 1999, SIGGRAPH.

[12]  B. C. Madden,et al.  Extended Intensity Range Imaging , 1993 .

[13]  Holly E. Rushmeier,et al.  Energy preserving non-linear filters , 1994, SIGGRAPH.

[14]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[15]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  S. Nayar,et al.  Generalized mosaicing , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[17]  Christophe Schlick,et al.  Quantization Techniques for Visualization of High Dynamic Range Pictures , 1995 .

[18]  Shree K. Nayar,et al.  High dynamic range imaging: spatially varying pixel exposures , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[19]  Kenneth Chiu,et al.  Spatially Nonuniform Scaling Functions for High Contrast Images , 1993 .

[20]  Christine D. Piatko,et al.  A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes , 1997, IEEE Trans. Vis. Comput. Graph..

[21]  Michael D. McCool,et al.  Anisotropic diffusion for Monte Carlo noise reduction , 1999, TOGS.

[22]  H. Barrow,et al.  RECOVERING INTRINSIC SCENE CHARACTERISTICS FROM IMAGES , 1978 .

[23]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[24]  Keiichi Koike,et al.  A 557-mW, 2.5-Gbit/s SONET/SDH regenerator-section terminating LSI chip using low-power bipolar-LSI design , 1999, IEEE J. Solid State Circuits.

[25]  Mark Meyer,et al.  Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data , 2000, Graphics Interface.

[26]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[27]  Brian A. Wandell,et al.  Rendering high dynamic range images , 2000, Electronic Imaging.

[28]  Greg Turk,et al.  Three methods of detail-preserving contrast reduction for displayed images , 1999 .

[29]  Frédo Durand,et al.  An invitation to discuss computer depiction , 2002, NPAR '02.

[30]  A. El Gamal,et al.  A 640/spl times/512 CMOS image sensor with ultra wide dynamic range floating-point pixel-level ADC , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).