A Uniformly Stable Nonconforming FEM Based on Weighted Interior Penalties for Darcy-Stokes-Brinkman Equations

A nonconforming rectangular finite element method is proposed to solve a fluid structure interaction problem characterized by the Darcy-Stokes-Brinkman Equation with discontinuous coefficients across the interface of different structures. A uniformly stable mixed finite element together with Nitsche-type matching conditions that automatically adapt to the coupling of different sub-problem combinations are utilized in the discrete algorithm. Compared with other finite element methods in the literature, the new method has some distinguished advantages and features. The Boland-Nicolaides trick is used in proving the inf-sup condition for the multidomain discrete problem. Optimal error estimates are derived for the coupled problem by analyzing the approximation errors and the consistency errors. Numerical examples are also provided to confirm the theoretical results.

[1]  Zhilin Li,et al.  An augmented Cartesian grid method for Stokes–Darcy fluid–structure interactions , 2016 .

[2]  Mingchao Cai,et al.  A Mixed and Nonconforming FEM with Nonmatching Meshes for a Coupled Stokes-Darcy Model , 2012, J. Sci. Comput..

[3]  Jinru Chen,et al.  Two-level and multilevel methods for Stokes-Darcy problem discretized by nonconforming elements on nonmatching meshes , 2012 .

[4]  Wenbin Chen,et al.  A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..

[5]  Francisco-Javier Sayas,et al.  Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..

[6]  Gabriel N. Gatica,et al.  A Residual-Based A Posteriori Error Estimator for the Stokes-Darcy Coupled Problem , 2010, SIAM J. Numer. Anal..

[7]  M. Feng,et al.  Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem , 2010 .

[8]  Shangyou Zhang,et al.  A New Divergence-Free Interpolation Operator with Applications to the Darcy--Stokes--Brinkman Equations , 2010, SIAM J. Sci. Comput..

[9]  Jincheng Ren,et al.  NONCONFORMING MIXED FINITE ELEMENT METHOD FOR THE STATIONARY CONDUCTION-CONVECTION PROBLEM , 2009 .

[10]  Jinchao Xu,et al.  Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications , 2009, J. Comput. Appl. Math..

[11]  Paolo Zunino,et al.  A Finite Element Method Based on Weighted Interior Penalties for Heterogeneous Incompressible Flows , 2009, SIAM J. Numer. Anal..

[12]  Todd Arbogast,et al.  A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .

[13]  H. Rui,et al.  A unified stabilized mixed finite element method for coupling Stokes and Darcy flows , 2009 .

[14]  Xiaoping,et al.  LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS , 2009 .

[15]  Frédéric Hecht,et al.  Mortar finite element discretization of a model coupling Darcy and Stokes equations , 2008 .

[16]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[17]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[18]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .

[19]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[20]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[21]  Lie-hengWang,et al.  A LOCKING-FREE SCHEME OF NONCONFORMING RECTANGULAR FINITE ELEMENT FOR THE PLANAR ELASTICITY , 2004 .

[22]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[23]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[24]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[25]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[26]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[27]  Faker Ben Belgacem,et al.  The Mixed Mortar Finite Element Method for the Incompressible Stokes Problem: Convergence Analysis , 2000, SIAM J. Numer. Anal..

[28]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[29]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[30]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[31]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[32]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.