Visualization and fractal analysis of biological sequences

[1]  Bin Wang,et al.  One way to characterize the compact structures of lattice protein model , 2000 .

[2]  Zu-Guo Yu,et al.  Multifractal Characterization of Complete Genomes , 2001 .

[3]  B. Hao,et al.  Fractals related to long DNA sequences and complete genomes , 2000 .

[4]  Liaofu Luo,et al.  STATISTICAL CORRELATION OF NUCLEOTIDES IN A DNA SEQUENCE , 1998 .

[5]  H. J. Jeffrey Chaos game representation of gene structure. , 1990, Nucleic acids research.

[6]  Robert B Russell,et al.  Classification of protein folds , 2002, Molecular biotechnology.

[7]  T. Gregory Dewey,et al.  Protein structure and polymer collapse , 1993 .

[8]  C. Peng,et al.  Long-range correlations in nucleotide sequences , 1992, Nature.

[9]  P. Tiňo Multifractal properties of Hao's geometric representations of DNA sequences , 2002 .

[10]  A. Fiser,et al.  Chaos game representation of protein structures. , 1994, Journal of molecular graphics.

[11]  C T Shih,et al.  Geometric and statistical properties of the mean-field hydrophobic-polar model, the large-small model, and real protein sequences. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  H-M Xie Grammatical Complexity and One-Dimensional Dynamical Systems , 1996 .

[13]  秦 浩起,et al.  Characterization of Strange Attractor (カオスとその周辺(基研長期研究会報告)) , 1987 .

[14]  N. Wingreen,et al.  Emergence of Preferred Structures in a Simple Model of Protein Folding , 1996, Science.

[15]  S. Basu,et al.  Chaos game representation of proteins. , 1997, Journal of molecular graphics & modelling.

[16]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[17]  Zu-Guo Yu,et al.  Dimensions of fractals related to languages defined by tagged strings in complete genomes , 1999, physics/9910040.

[18]  V. V. Prabhu,et al.  Correlations in intronless DNA , 1992, Nature.

[19]  Zu-Guo Yu,et al.  Multifractal and correlation analyses of protein sequences from complete genomes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  M. Lewis,et al.  Fractal surfaces of proteins. , 1985, Science.

[21]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[22]  C T Shih,et al.  Mean-field HP model, designability and alpha-helices in protein structures. , 2000, Physical review letters.

[23]  P. Pfeifer,et al.  Fractal surface dimension of proteins: Lysozyme , 1985 .

[24]  Skolnick,et al.  Global fractal dimension of human DNA sequences treated as pseudorandom walks. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  W Wang,et al.  Modeling study on the validity of a possibly simplified representation of proteins. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[27]  Flavio Seno,et al.  Steric Constraints in Model Proteins , 1998 .

[28]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[30]  Zu-Guo Yu,et al.  Factorizable language: from dynamics to bacterial complete genomes , 2000 .

[31]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[32]  K. Lau,et al.  Measure representation and multifractal analysis of complete genomes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[34]  E. Vrscay Iterated function systems: theory, applications and the inverse problem , 1991 .

[35]  J. Qi,et al.  Whole Proteome Prokaryote Phylogeny Without Sequence Alignment: A K-String Composition Approach , 2003, Journal of Molecular Evolution.

[36]  Enrique Canessa,et al.  MULTIFRACTALITY IN TIME SERIES , 2000, cond-mat/0004170.

[37]  K. Lau,et al.  Recognition of an organism from fragments of its complete genome. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Boris A. Fedorov,et al.  An analysis of the fractal properties of the surfaces of globular proteins , 1993 .

[39]  D. Zeilberger,et al.  The Goulden—Jackson cluster method: extensions, applications and implementations , 1998, math/9806036.

[40]  Dewey,et al.  Multifractal analysis of solvent accessibilities in proteins. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  D Larhammar,et al.  Biological origins of long-range correlations and compositional variations in DNA. , 1993, Nucleic acids research.

[42]  D. A. Lidar,et al.  FRACTAL ANALYSIS OF PROTEIN POTENTIAL ENERGY LANDSCAPES , 1999 .

[43]  Luo Liao-fu,et al.  Fractal dimension of nucleic acid sequences and its relation to evolutionary level , 1988 .

[44]  C. Chothia One thousand families for the molecular biologist , 1992, Nature.

[45]  K. Dill Theory for the folding and stability of globular proteins. , 1985, Biochemistry.

[46]  V S Pande,et al.  Nonrandomness in protein sequences: evidence for a physically driven stage of evolution? , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Zu-Guo Yu,et al.  Fractal Analysis of Measure Representation of Large Proteins Based on the Detailed HP Model , 2004 .

[48]  Strait,et al.  Multifractals and decoded walks: Applications to protein sequence correlations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  H. Stanley,et al.  Analysis of DNA sequences using methods of statistical physics , 1998 .