Ab initio defect energetics of perovskite ( 001 ) surfaces for solid oxide fuel cells : A comparative study of LaMnO _ { 3 } versus SrTiO

[1]  Y. Shao-horn,et al.  Revealing the atomic structure and strontium distribution in nanometer-thick La0.8Sr0.2CoO3−δ grown on (001)-oriented SrTiO3 , 2014 .

[2]  M. Scheffler,et al.  Concentration of vacancies at metal-oxide surfaces: case study of MgO(100). , 2013, Physical review letters.

[3]  Bilge Yildiz,et al.  Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. , 2013, Journal of the American Chemical Society.

[4]  D. Morgan,et al.  A-Site Diffusion in La1-xSrxMnO3: Ab Initio and Kinetic Monte Carlo Calculations , 2013 .

[5]  E. Tsymbal,et al.  Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces , 2012 .

[6]  D. Morgan,et al.  Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells , 2012 .

[7]  D. Morgan,et al.  Ab initio and empirical defect modeling of LaMnO(3±δ) for solid oxide fuel cell cathodes. , 2012, Physical chemistry chemical physics : PCCP.

[8]  J. Goodenough,et al.  A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles , 2011, Science.

[9]  D. Morgan,et al.  Prediction of solid oxide fuel cell cathode activity with first-principles descriptors , 2011 .

[10]  First-principles study of polar LaAlO (001) surface stabilization by point defects , 2011 .

[11]  J. Goodenough,et al.  Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. , 2011, Nature chemistry.

[12]  Meilin Liu,et al.  Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform , 2011 .

[13]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[14]  B. Yildiz,et al.  New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La0.7Sr0.3MnO3 , 2011 .

[15]  G. Aeppli,et al.  Imaging oxygen defects and their motion at a manganite surface. , 2011, Nature communications.

[16]  T. Jacob,et al.  Oxygen adsorption at La 1-x Sr x MnO 3 (001) surfaces: Predictions from first principles , 2011 .

[17]  W. Harrison The origin of Sr segregation at La1-xSrxMnO3 surfaces , 2011, 1101.5414.

[18]  M. Stengel First-principles modeling of electrostatically doped perovskite systems. , 2010, Physical review letters.

[19]  Jan Rossmeisl,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide , 2011 .

[20]  J. Rossmeisl,et al.  Trends in stability of perovskite oxides. , 2010, Angewandte Chemie.

[21]  Bilge Yildiz,et al.  Competing strain effects in reactivity of LaCoO 3 with oxygen , 2010 .

[22]  Y. Orikasa,et al.  Catalytic activity enhancement for oxygen reduction on epitaxial perovskite thin films for solid-oxide fuel cells. , 2010, Angewandte Chemie.

[23]  F. Steglich,et al.  Atomically resolved scanning tunneling microscopy on perovskite manganite single crystals , 2010 .

[24]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[25]  D. Morgan,et al.  Prediction of Surface Oxygen Vacancy Concentrations of (La1-xSrx)MnO3 , 2009 .

[26]  Biao Wang,et al.  First-principles study on energetics of intrinsic point defects in LaAlO 3 , 2009 .

[27]  Berry-phase theory of polar discontinuities at oxide-oxide interfaces , 2009, 0909.1500.

[28]  B. Yildiz,et al.  Electron tunneling characteristics on La[subscript 0.7]Sr[subscript 0.3]MnO[subscript 3] thin-film surfaces at high temperature , 2009 .

[29]  P. Littlewood,et al.  Oxide superlattices with alternating p and n interfaces , 2009, 0905.0881.

[30]  J. Maier,et al.  Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces , 2009 .

[31]  W. Pickett,et al.  Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through polar distortion. , 2008, Physical review letters.

[32]  T. Ward,et al.  Tunable Metallicity of the La 5 = 8 Ca 3 = 8 MnO 3 ð 001 Þ Surface by an Oxygen Overlayer , 2009 .

[33]  T. Fister,et al.  In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure , 2008 .

[34]  J. Maier,et al.  Adsorption of atomic and molecular oxygen on the LaMnO3(001) surface: ab initio supercell calculations and thermodynamics. , 2008, Physical chemistry chemical physics : PCCP.

[35]  Meilin Liu,et al.  Refinement of the bulk defect model for LaxSr1 − xMnO3 ± δ , 2008 .

[36]  Atomic relaxation and electronic redistribution of LaAlO3(001) surfaces , 2007 .

[37]  E. Siebert,et al.  Investigation of chemisorbed oxygen, surface segregation and effect of post-treatments on La0.8Sr0.2MnO3 powder and screen-printed layers for solid oxide fuel cell cathodes , 2007 .

[38]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[39]  Surface Reconstruction with a Fractional Hole : , 2007 .

[40]  J. Robertson,et al.  Defect states in the high-dielectric-constant gate oxide LaAlO3 , 2006 .

[41]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[42]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[43]  B. Potapkin,et al.  First-principles calculations of the electrical properties ofLaAlO3and its interface with Si , 2005 .

[44]  W. Jaegermann,et al.  X-ray photoelectron spectroscopy of La0.5Sr0.5MnO3 , 2005 .

[45]  R. Evarestov,et al.  DFT plane wave calculations of the atomic and electronic structure of LaMnO3 (001) surface. , 2005, Physical chemistry chemical physics : PCCP.

[46]  M. Rȩkas,et al.  Defect Chemistry of (La,Sr)MnO3 , 2005 .

[47]  R. Evarestov,et al.  Ab initio calculations of the LaMnO3 surface properties , 2004 .

[48]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[49]  John B. Goodenough,et al.  Electronic and ionic transport properties and other physical aspects of perovskites , 2004 .

[50]  M. Finnis,et al.  SrTiO3 (001) (2x1) reconstructions: first-principles calculations of surface energy and atomic structure compared with scanning tunnelling microscopy images , 2004 .

[51]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[52]  Juergen Fleig Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance , 2003 .

[53]  P. Woodward,et al.  Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family , 2003 .

[54]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[55]  N. Erdman,et al.  The structure and chemistry of the TiO2-rich surface of SrTiO3 (001) , 2002, Nature.

[56]  J. Maier,et al.  First-principles calculations for SrTiO3(100) surface structure , 2002 .

[57]  Y. Okimoto,et al.  Anisotropic optical spectra in a detwinned LaMnO 3 crystal , 2001 .

[58]  H. Inaba,et al.  Oxygen nonstoichiometry and defect equilibrium in the perovskite-type oxides La1−xSrxMnO3+d , 2000 .

[59]  F. Poulsen Defect chemistry modelling of oxygen-stoichiometry, vacancy concentrations, and conductivity of (La1−xSrx)yMnO3±δ , 2000 .

[60]  P. Dowben,et al.  Surface segregation and restructuring of colossal- magnetoresistant manganese perovskites , 2000 .

[61]  J. Kilner,et al.  Oxygen transport in La1−xSrxMn1−yCoyO3±δ perovskites: Part II. Oxygen surface exchange , 1999 .

[62]  P. Decorse,et al.  A comparative study of the surface and bulk properties of lanthanum-strontium-manganese oxides La1−xSrxMnO3±δ as a function of Sr-content, oxygen potential and temperature , 1999 .

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  S. K. Paranjpe,et al.  Novel magnetic phases in : a neutron diffraction study , 1998 .

[65]  D. Vanderbilt,et al.  Ab-initio study of SrTiO3 surfaces , 1998, cond-mat/9802207.

[66]  J. Rodríguez-Carvajal,et al.  Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO 3 , 1998 .

[67]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[68]  S. Bader,et al.  Structural phase diagram of La1-xSrxMnO3+ delta : Relationship to magnetic and transport properties. , 1996, Physical review. B, Condensed matter.

[69]  B. Steele Survey of materials selection for ceramic fuel cells II. Cathodes and anodes , 1996 .

[70]  J. Kilner,et al.  Surface exchange of oxygen in mixed conducting perovskite oxides , 1996 .

[71]  W. J. Orville-Thomas Atoms in Molecules — a Quantum Theory , 1996 .

[72]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[73]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[74]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[75]  Tokura,et al.  Variation of optical gaps in perovskite-type 3d transition-metal oxides. , 1993, Physical review. B, Condensed matter.

[76]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[77]  Uchida,et al.  Controlled-valence properties of La1-xSrxFeO3 and La1-xSrxMnO3 studied by soft-x-ray absorption spectroscopy. , 1992, Physical review. B, Condensed matter.

[78]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[79]  J. H. Kuo,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: Defect structure, electrical conductivity, and thermoelectric power , 1990 .

[80]  H. Anderson,et al.  Oxidation-reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure , 1989 .

[81]  R. M. Cannon,et al.  Space charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces , 1983 .

[82]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[83]  W. Kingery Plausible Concepts Necessary and Sufficient for Interpretation of Ceramic Grain‐Boundary Phenomena: II, Solute Segregation, Grain‐Boundary Diffusion, and General Discussion* , 1974 .

[84]  S. Geller,et al.  Crystallographic studies of perovskite‐like compounds. II. Rare earth alluminates , 1956 .