Exact State Estimation for Linear Systems with Unbounded Disturbances

A finite-time observer is designed for linear invariant systems in the presence of unknown inputs or disturbances with unavailable upper bound. The main condition for designing the observer is strongly detectability. Geometric control theory is used to decompose the given system into two parts: strongly observable subsystem and strongly detectable subsystem. Through a series of transformations, the former can be partitioned into two parts: affected and unaffected by unknown inputs (UI-free and UI-dependent), and then the states can be exactly estimated via time-delayed observer in pre-defined time. The nonstrongly observable subsystem can be observed asymptotically. Without the upper bound of disturbances, the observer ensures that the convergence time can be set arbitrarily. A numerical example illustrates the effective of the proposed estimation schemes.

[1]  X. Xia,et al.  Semi-global finite-time observers for nonlinear systems , 2008, Autom..

[2]  Changfan Zhang,et al.  Fault Reconstruction Based on Sliding Mode Observer for Nonlinear Systems , 2012 .

[3]  Min-Shin Chen,et al.  Unknown input observer for linear non-minimum phase systems , 2010, J. Frankl. Inst..

[4]  K.-S. Lee,et al.  New results on fault reconstruction using a finite-time converging unknown input observer , 2012 .

[5]  G. Basile,et al.  Controlled and conditioned invariants in linear system theory , 1992 .

[6]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[7]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[8]  S. Spurgeon,et al.  On the development of discontinuous observers , 1994 .

[9]  Leonid M. Fridman,et al.  Global hierarchical observer for linear systems with unknown inputs , 2008, 2008 47th IEEE Conference on Decision and Control.

[10]  Alexander S. Poznyak,et al.  Observation of linear systems with unknown inputs via high-order sliding-modes , 2007, Int. J. Syst. Sci..

[11]  S. Żak,et al.  State observation of nonlinear uncertain dynamical systems , 1987 .

[12]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[13]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[14]  M. Hou,et al.  Design of observers for linear systems with unknown inputs , 1992 .

[15]  Zhihong Man,et al.  Terminal sliding mode observers for a class of nonlinear systems , 2010, Autom..

[16]  Alexander S. Poznyak,et al.  Unknown Input and State Estimation for Unobservable Systems , 2009, SIAM J. Control. Optim..

[17]  B. Molinari A strong controllability and observability in linear multivariable control , 1976 .

[18]  Guanghui Sun,et al.  Fault-reconstruction-based cascaded sliding mode observers for descriptor linear systems , 2012 .

[19]  G. Basile,et al.  On the observability of linear, time-invariant systems with unknown inputs , 1969 .

[20]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[21]  Domenico Prattichizzo,et al.  Geometric Control Theory for Linear Systems: a Tutorial , 2010 .

[22]  Mohamed Darouach Complements to full order observer design for linear systems with unknown inputs , 2009, Appl. Math. Lett..

[23]  Wilfrid Perruquetti,et al.  A Global High-Gain Finite-Time Observer , 2010, IEEE Transactions on Automatic Control.

[24]  Mihai Lungu,et al.  Reduced Order Observer for Linear Time-Invariant Multivariable Systems with Unknown Inputs , 2013, Circuits Syst. Signal Process..

[25]  D. Luenberger An introduction to observers , 1971 .

[26]  T.-G. Park,et al.  Estimation strategies for fault isolation of linear systems with disturbances , 2010 .

[27]  M. Hautus Strong detectability and observers , 1983 .

[28]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[29]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[30]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[31]  Mohammad Javad Yazdanpanah,et al.  Adaptive state observer for Lipschitz nonlinear systems , 2013, Syst. Control. Lett..

[32]  Alan J. Watson,et al.  Fault Detection for Modular Multilevel Converters Based on Sliding Mode Observer , 2013, IEEE Transactions on Power Electronics.

[33]  Arie Levant,et al.  High-order sliding-mode observation for linear systems with unknown inputs , 2011 .

[34]  Wilfrid Perruquetti,et al.  Observability and detectability of singular linear systems with unknown inputs , 2013, Autom..

[35]  József Bokor,et al.  Unknown input reconstruction for LPV systems , 2010 .

[36]  Mihai Lungu,et al.  Full-order observer design for linear systems with unknown inputs , 2012, Int. J. Control.

[37]  Denis Dochain,et al.  Design of a nonlinear finite-time converging observer for a class of nonlinear systems , 2007 .

[38]  S. Żak,et al.  Observer design for systems with unknown inputs , 2005 .

[39]  Christopher Edwards,et al.  Adaptive Sliding-Mode-Observer-Based Fault Reconstruction for Nonlinear Systems With Parametric Uncertainties , 2008, IEEE Transactions on Industrial Electronics.

[40]  XiuCheng Deng,et al.  An approach to design semi-global finite-time observers for a class of nonlinear systems , 2011, Science in China Series F: Information Sciences.

[41]  Xiaohua Xia,et al.  A high-gain-based global finite-time nonlinear observer , 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA).

[42]  R. Guidorzi,et al.  On Wonham stabilizability condition in the synthesis of observers for unknown-input systems , 1971 .

[43]  Harry L. Trentelman,et al.  Control theory for linear systems , 2002 .

[44]  Jie Huang,et al.  On an output feedback finite-time stabilization problem , 2001, IEEE Trans. Autom. Control..

[45]  Shihua Li,et al.  Recursive design of finite-time convergent observers for a class of time-varying nonlinear systems , 2013, Autom..

[46]  Francisco Javier Bejarano,et al.  Partial unknown input reconstruction for linear systems , 2011, Autom..

[47]  Robert Engel,et al.  A continuous-time observer which converges in finite time , 2002, IEEE Trans. Autom. Control..

[48]  Fanglai Zhu,et al.  State estimation and unknown input reconstruction via both reduced-order and high-order sliding mode observers☆ , 2012 .