Clustering behavior in a three-layer system mimicking olivo-cerebellar dynamics

A model is presented that simulates the process of neuronal synchronization, formation of coherent activity clusters and their dynamic reorganization in the olivo-cerebellar system. Three coupled 2D lattices dealing with the main cellular groups in this neuronal circuit are used to model the dynamics of the excitatory feedforward loop linking the inferior olive (IO) neurons to the cerebellar nuclei (CN) via collateral axons that also proceed to terminate as climbing fiber afferents to Purkinje cells (PC). Inhibitory feedback from the CN-lattice fosters decoupling of units in a vicinity of a given IO neuron. It is shown that noise-sustained oscillations in the IO-lattice are capable to synchronize and generate coherent firing clusters in the layer accounting for the excitable collateral axons. The model also provides phase resetting of the oscillations in the IO-lattices with transient silent behavior. It is also shown that the CN-IO feedback leads to transient patterns of couplings in the IO and to a dynamic control of the size of clusters.

[1]  K. Doya,et al.  Electrophysiological properties of inferior olive neurons: A compartmental model. , 1999, Journal of neurophysiology.

[2]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[3]  R Llinás,et al.  Bilaterally synchronous complex spike Purkinje cell activity in the mammalian cerebellum , 2001, The European journal of neuroscience.

[4]  R. Llinás,et al.  GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. , 1996, Journal of neurophysiology.

[5]  S. Gilman Cerebellar control of movement , 1994, Annals of neurology.

[6]  Olaf Sporns,et al.  Modeling in the Neurosciences , 1999 .

[7]  J. Szentágothai,et al.  Über den Ursprung der Kletterfasern des Kleinhirns , 1959, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[8]  Vladimir I. Nekorkin,et al.  Clustering and phase resetting in a chain of bistable nonisochronous oscillators , 1998 .

[9]  Y. Lamarre,et al.  Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system of the cat. , 1973, Brain research.

[10]  Idan Segev,et al.  Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. , 1997, Journal of neurophysiology.

[11]  S. Finkbeiner Mathematical Aspects of Hodgkin-Huxley Neural Theory , 1988, The Yale Journal of Biology and Medicine.

[12]  Manuel G. Velarde,et al.  A Simple Generalized Excitability Model Mimicking Salient Features of Neuron Dynamics , 2000 .

[13]  I. Lampl,et al.  Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism , 1997, Neuroscience.

[14]  G. Ermentrout Principles of brain functioning: A synergetic approach to brain activity, behavior, and cognition , 1997 .

[15]  R. Llinás,et al.  Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. , 1981, The Journal of physiology.

[16]  R. Llinás,et al.  Experimentally determined chaotic phase synchronization in a neuronal system. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Alexander S. Mikhailov,et al.  From Cells to Societies: Models of Complex Coherent Action. Authorized translation from the English edition published by Springer-Verlag , 2006 .

[18]  Alexander S. Mikhailov,et al.  From Cells to Societies: Models of Complex Coherent Action. Authorized translation from the English edition published by Springer-Verlag , 2006 .

[19]  Marcel Abendroth,et al.  Biological delay systems: Linear stability theory , 1990 .

[20]  S. Palay,et al.  Tendril and glomerular collaterals of climbing fibers in the granular layer of the rat's cerebellar cortex , 2004, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[21]  Y. Yarom Oscillatory Behavior of Olivary Neurons , 1989 .

[22]  Ruigrok Tj Cerebellar nuclei: the olivary connection. , 1997 .

[23]  P. Arena,et al.  Cellular neural networks : chaos, complexity and VLSI processing , 1999 .

[24]  Vladimir I. Nekorkin,et al.  Synergetic phenomena in active lattices : patterns, waves, solitons, chaos , 2002 .

[25]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[26]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[27]  Alexander B. Neiman,et al.  Coherence resonance in a Hodgkin-Huxley neuron , 1998 .

[28]  R. Llinás,et al.  Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage‐dependent ionic conductances. , 1981, The Journal of physiology.

[29]  R. Llinás,et al.  Electrotonic coupling between neurons in cat inferior olive. , 1974, Journal of neurophysiology.

[30]  Robert E. Foster,et al.  Oscillatory behavior in inferior olive neurons: Mechanism, modulation, cell aggregates , 1986, Brain Research Bulletin.

[31]  V I Nekorkin,et al.  Spiking behavior in a noise-driven system combining oscillatory and excitatory properties. , 2001, Physical review letters.

[32]  D. H. Paul,et al.  Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres , 1971, The Journal of physiology.

[33]  T. Ruigrok,et al.  Chapter 10 Cerebellar nuclei: the olivary connection , 1997 .

[34]  K. Vahala Handbook of stochastic methods for physics, chemistry and the natural sciences , 1986, IEEE Journal of Quantum Electronics.

[35]  J. Wessberg,et al.  Organization of motor output in slow finger movements in man. , 1993, The Journal of physiology.

[36]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[37]  Valeri A. Makarov,et al.  Oscillatory Phenomena and Stability of Periodic Solutions in a Simple Neural Network with Delay , 2002 .

[38]  Jacques Bélair,et al.  Bifurcations, stability, and monotonicity properties of a delayed neural network model , 1997 .

[39]  José M. Casado,et al.  Bursting behaviour of the FitzHugh-Nagumo neuron model subject to quasi-monochromatic noise , 1998 .

[40]  R. Llinás,et al.  The isochronic band hypothesis and climbing fibre regulation of motricity: an experimental study , 2001, The European journal of neuroscience.

[41]  P. Strata The Olivocerebellar system in motor control , 1989 .

[42]  R. Llinás,et al.  On the cerebellum and motor learning , 1993, Current Opinion in Neurobiology.

[43]  R. Llinás Electrophysiological Properties of the Olivocerebellar System , 1989 .

[44]  Henry C. Tuckwell,et al.  Stochastic processes in the neurosciences , 1989 .

[45]  Vladimir I. Nekorkin,et al.  Modeling inferior olive neuron dynamics , 2002, Neural Networks.

[46]  H. Bielka,et al.  [The functional organization of the cell]. , 1969, Deutsche Stomatologie.

[47]  R Llinás,et al.  Long-term modifiability of anomalous and delayed rectification in guinea pig inferior olivary neurons , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  R. Llinás,et al.  Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. , 1974, Journal of neurophysiology.

[49]  C. Bell,et al.  Relations among climbing fiber responses of nearby Purkinje Cells. , 1972, Journal of neurophysiology.

[50]  R. Llinás,et al.  Oscillatory properties of guinea‐pig inferior olivary neurones and their pharmacological modulation: an in vitro study. , 1986, The Journal of physiology.

[51]  J. Eccles,et al.  Responses in the dorsal accessory olive of the cat to stimulation of hind limb afferents , 1968, The Journal of physiology.

[52]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[53]  Frank C. Hoppensteadt,et al.  An introduction to the mathematics of neurons , 1986 .

[54]  R Llinás,et al.  Some organizing principles for the control of movement based on olivocerebellar physiology. , 1997, Progress in brain research.

[55]  P. Tass Phase Resetting in Medicine and Biology , 1999 .

[56]  Rodolfo R. Llinás,et al.  A New Approach to the Analysis of Multidimensional Neuronal Activity: Markov Random Fields , 1997, Neural Networks.

[57]  Vladimir I. Nekorkin,et al.  Synergetic Phenomena in Active Lattices , 2002 .

[58]  K. Behrend Cerebellar Control of Movement in Fish as Revealed by Small Lesions , 1984 .

[59]  Peter A. Tass,et al.  Phase Resetting in Medicine and Biology: Stochastic Modelling and Data Analysis , 1999 .

[60]  A. Holden Models of the stochastic activity of neurones , 1976 .

[61]  R. Llinás,et al.  Uniform olivocerebellar conduction time underlies Purkinje cell complex spike synchronicity in the rat cerebellum. , 1993, The Journal of physiology.

[62]  R. Llinás,et al.  The olivo-cerebellar system: Functional properties as revealed by harmaline-induced tremor , 1973, Experimental Brain Research.

[63]  Roman R. Poznanski Modeling in the Neurosciences: From Ionic Channels to Neural Networks , 1999 .

[64]  Y. Lamarre,et al.  Harmaline-induced rhythmic activity of cerebellar and lower brain stem neurons. , 1971, Brain research.

[65]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[66]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[67]  C. Sotelo,et al.  Localization of glutamic‐acid‐decarboxylase‐immunoreactive axon terminals in the inferior olive of the rat, with special emphasis on anatomical relations between GABAergic synapses and dendrodendritic gap junctions , 1986, The Journal of comparative neurology.

[68]  John G. Milton,et al.  Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback , 1995 .

[69]  J. Bower,et al.  Multiple Purkinje Cell Recording in Rodent Cerebellar Cortex , 1989, The European journal of neuroscience.

[70]  A. Longtin AUTONOMOUS STOCHASTIC RESONANCE IN BURSTING NEURONS , 1997 .