InP photonic circuits using generic integration (Invited)

InP integrated photonics has become a critical enabler for modern telecommunications, and is poised to revolutionize data communications, precision metrology, spectrometry, and imaging. The possibility to integrate high-performance amplifiers, lasers, modulators, and detectors in combination with interferometers within one chip is enabling game-changing performance advances, energy savings, and cost reductions. Generic integration accelerates progress through the separation of applications from a common technology development. In this paper, we review the current status in InP integrated photonics and the efforts to integrate the next generation of high-performance functionality on a common substrate using the generic methodology.

[1]  K A Williams,et al.  Relaxed Dimensional Tolerance Whispering Gallery Microbends , 2011, Journal of Lightwave Technology.

[3]  Mk Meint Smit,et al.  Integrated Tunable Quantum Dot Laser for Optical Coherence Tomography in the 1.7?m Wavelength Region , 2011 .

[4]  M. Smit,et al.  Realization of efficient metal grating couplers for membrane-based integrated photonics. , 2015, Optics letters.

[5]  Radhakrishnan Nagarajan,et al.  From Visible Light-Emitting Diodes to Large-Scale III–V Photonic Integrated Circuits , 2013, Proceedings of the IEEE.

[6]  M. Smit,et al.  New Analytical Arrayed Waveguide Grating Model , 2013, Journal of Lightwave Technology.

[7]  M. Smit,et al.  Design of a compact high-performance InP ring resonator , 2014, 2014 Third Mediterranean Photonics Conference.

[8]  M. Smit,et al.  Coupled cavity laser based on anti-resonant imaging via multimode interference. , 2015, Optics letters.

[9]  Sylwester Latkowski,et al.  Monolithically integrated 2.5  GHz extended cavity mode-locked ring laser with intracavity phase modulators. , 2015, Optics letters.

[10]  N. Dagli,et al.  0.2 V Drive Voltage Substrate Removed Electro-Optic Mach–Zehnder Modulators With MQW Cores at 1.55 μm , 2014, Journal of Lightwave Technology.

[11]  Mk Meint Smit,et al.  First Demonstration of an Electrically Pumped Laser in the InP Membrane on Silicon Platform , 2015 .

[12]  J. V. D. van der Tol,et al.  Increasing Tolerance in Passive Integrated Optical Polarization Converters , 2012, Journal of Lightwave Technology.

[13]  Yuqing Jiao,et al.  Fullerene-assisted electron-beam lithography for pattern improvement and loss reduction in InP membrane waveguide devices. , 2014, Optics letters.

[14]  Stephen K. Jones,et al.  InP Mach–Zehnder Modulator Platform for 10/40/100/200-Gb/s Operation , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  Mk Meint Smit,et al.  A normalized approach to the design of low-loss optical waveguide bends , 1993 .

[16]  Scott W. Corzine,et al.  Monolithic InP-based coherent transmitter photonic integrated circuit with 2.25 Tbit/s capacity , 2014 .

[17]  Highly efficient metal grating coupler for membrane-based integrated photonics. , 2014, Optics letters.

[18]  van der Jjgm Jos Tol,et al.  Moore's law in photonics , 2012 .

[19]  Meint K. Smit,et al.  Multimode Interference Reflectors: A New Class of Components for Photonic Integrated Circuits , 2013, Journal of Lightwave Technology.

[20]  A. Rohit,et al.  Monolithically Integrated 8 × 8 Space and Wavelength Selective Cross-Connect , 2014, Journal of Lightwave Technology.

[21]  E. Bente,et al.  Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser. , 2014, Optics express.

[22]  J. V. D. van der Tol,et al.  Improved fabrication process of low-loss and efficient polarization converters in InP-based photonic integrated circuits. , 2013, Optics letters.

[23]  Christophe Kazmierski,et al.  Photonic Integrated Multichannel WDM Modulators for Data Read-Out Units , 2014, Journal of Lightwave Technology.

[24]  M. Smit,et al.  Low-optical-loss, low-resistance Ag/Ge based ohmic contacts to n-type InP for membrane based waveguide devices , 2015 .

[25]  D. J. Robbins,et al.  Generic foundry model for InP-based photonics , 2011 .

[26]  M. J. Wale,et al.  InP-Based Photonic Multiwavelength Transmitter With DBR Laser Array , 2013, IEEE Photonics Technology Letters.

[27]  N. Dagli,et al.  0.77-V drive voltage electro-optic modulator with bandwidth exceeding 67 GHz. , 2014, Optics letters.

[28]  Okamoto Katsunari,et al.  Planar lightwave circuits in fiber-optic communications , 2008 .

[29]  J L Wei,et al.  Monolithic MZI-SOA hybrid switch for low-power and low-penalty operation. , 2014, Optics letters.

[30]  Guillermo Carpintero,et al.  On-chip mode-locked laser diode structure using multimode interference reflectors , 2015 .

[31]  Yuqing Jiao,et al.  Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 $\mu{\rm m}$ Wavelength Region , 2012, IEEE Journal of Quantum Electronics.

[32]  Dzmitry O Dzibrou,et al.  Tolerant polarization converter for InGaAsP-InP photonic integrated circuits. , 2013, Optics letters.

[33]  K A Williams,et al.  Monolithic active-passive 16 × 16 optoelectronic switch. , 2012, Optics letters.

[34]  M. J. Wale,et al.  InP-Based Integrated Optical Pulse Shaper: Demonstration of Chirp Compensation , 2013, IEEE Photonics Technology Letters.

[35]  A. Leinse,et al.  TriPleX: a versatile dielectric photonic platform , 2015 .

[36]  Fred A. Kish,et al.  Semiconductor Photonic Integrated Circuit Transmitters and Receivers , 2013 .

[37]  Richard V. Penty,et al.  An introduction to InP-based generic integration technology , 2014 .

[38]  Xuhan Guo,et al.  Monolithically integrated selectable repetition-rate laser diode source of picosecond optical pulses. , 2014, Optics letters.

[39]  Daniele Melati,et al.  Multimode Interference Couplers With Reduced Parasitic Reflections , 2014, IEEE Photonics Technology Letters.

[40]  A. Wonfor,et al.  First demonstration of automated control and assessment of a dynamically reconfigured monolithic 8 × 8 wavelength-and-space switch [invited] , 2015, IEEE/OSA Journal of Optical Communications and Networking.