Subdirectly Irreducible Modal Algebras and Initial Frames

The duality between general frames and modal algebras allows to transfer a problem about the relational (Kripke) semantics into algebraic terms, and conversely. We here deal with the conjecture: the modal algebra A is subdirectly irreducible (s.i.) if and only if the dual frame A* is generated. We show that it is false in general, and that it becomes true under some mild assumptions, which include the finite case and the case of K4. We also prove that a Kripke frame F is generated if and only if the dual algebra F* is s.i. The technical result is that A is s.i. when the set of points which generate the dual frame A* is not of zero measure.