Constructing set systems with prescribed intersection sizes

Let f be an n-variable polynomial with positive integer coefficients, and let H = {H1, H2,..., Hm} be a set system on the n-element universe. We define a set system f(H) = {G1, G2,..., Gm} and prove that f(Hi1 ∩ Hi2 ∩... ∩ Hik) = |Gi1 ∩ Gi2 ∩ ... ∩ Gik|, for any 1 ≤ k ≤ m, where f(Hi1 ∩ Hi2 ∩... ∩Hik) denotes the value of f on the characteristic vector of Hi1 ∩ Hi2 ∩... ∩ Hik. The construction of f(H) is a straightforward polynomial-time algorithm from the set system H and the polynomial f. In this paper we use this algorithm for constructing set systems with prescribed intersection sizes modulo an integer. As a by-product of our method, some upper bounds on the number of sets in set systems with prescribed intersection sizes are extended.

[1]  Richard J. Lipton,et al.  Multi-party protocols , 1983, STOC.

[2]  Vince Grolmusz Harmonic Analysis, Real Approximation, and the Communication Complexity of Boolean Functions , 1999, Algorithmica.

[3]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[4]  Richard M. Wilson,et al.  On $t$-designs , 1975 .

[5]  David A. Mix Barrington,et al.  Representing Boolean functions as polynomials modulo composite numbers , 1992, STOC '92.

[6]  Gábor Tardos,et al.  A lower bound on the mod 6 degree of the OR function , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[7]  Vince Grolmusz Circuits and multi-party protocols , 1998, computational complexity.

[8]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[9]  J. Kahn,et al.  A counterexample to Borsuk's conjecture , 1993, math/9307229.

[10]  Z. Füredi Surveys in Combinatorics, 1991: “Turán Type Problems” , 1991 .

[11]  Vince Grolmusz,et al.  Superpolynomial Size Set-systems with Restricted Intersections mod 6 and Explicit Ramsey Graphs , 2000, Comb..

[12]  P. Frankl,et al.  On functions of strengtht , 1983 .

[13]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[14]  Avi Wigderson,et al.  Improved Derandomization of BPP Using a Hitting Set Generator , 1999, RANDOM-APPROX.

[15]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[16]  P. Frankl,et al.  Linear Algebra Methods in Combinatorics I , 1988 .

[17]  Alexander A. Razborov,et al.  n^Omega(log n) Lower Bounds on the Size of Depth-3 Threshold Circuits with AND Gates at the Bottom , 1993, Information Processing Letters.

[18]  Peter Bro Miltersen,et al.  Are bitvectors optimal? , 2000, STOC '00.

[19]  Vince Grolmusz,et al.  The BNS Lower Bound for Multi-Party Protocols in Nearly Optimal , 1994, Inf. Comput..

[20]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[21]  Zoltán Füredi,et al.  Finite projective spaces and intersecting hypergraphs , 1986, Comb..

[22]  Vince Grolmusz Low Rank Co-Diagonal Matrices and Ramsey Graphs , 2000, Electron. J. Comb..

[23]  Noam Nisan,et al.  Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs , 1992, J. Comput. Syst. Sci..

[24]  Vince Grolmusz Separating the Communication Complexities of MOD m and MOD p Circuits , 1995, J. Comput. Syst. Sci..

[25]  Vince Grolmusz On the Weak mod m Representation of Boolean Functions , 1995, Chic. J. Theor. Comput. Sci..

[26]  Gábor Tardos,et al.  A lower bound on the mod 6 degree of the OR function , 1998, computational complexity.