Usage secondaire du dossier médical informatisé à des fins épidémiologiques et d'évaluation de la qualité des soins : le projet SYNODOS

Background: The purpose of the SYNODOS project is to develop a generic solution for extracting semantics out of medical data and organize this medical information in such a way that it could be used to support epidemiological studies or evaluate healthcare quality. Methods: SYNODOS proposes a general modular architecture that makes a clear distinction between linguistic rules and expert system rules. An interface between the semantic analyzer and multi-terminology server upstream during the extraction phase, linguistic rules to extract temporal expressions as well as an interface between linguistic engine and knowledge representation are being developed. Results: Project outcomes will be an operational system integrating the various technological modules described above. The project will also evaluate the quality of extracted information in two domains: hospital acquired infections and cancer. Conclusion: We have described a project whose originality lies in the integration into a single solution of the various technologies needed to produce epidemiological indicators in the context of hospital activity. Mots-cles : Epidemiologie; Systemes d’aide a la decision clinique ; Systemes informatises de dossiers medicaux ; Evaluation de programme.

[1]  Stéfan Jacques Darmoni,et al.  Annotation methods to develop and evaluate an expert system based on natural language processing in electronic medical records , 2015, MedInfo.

[2]  Olivier Dameron,et al.  Temporal representation of care trajectories of cancer patients using data from a regional information system: an application in breast cancer , 2014, BMC Medical Informatics and Decision Making.

[3]  Cui Tao,et al.  Normalization and standardization of electronic health records for high-throughput phenotyping: the SHARPn consortium. , 2013, Journal of the American Medical Informatics Association : JAMIA.

[4]  Melissa A. Basford,et al.  The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future , 2013, Genetics in Medicine.

[5]  George Hripcsak,et al.  Next-generation phenotyping of electronic health records , 2012, J. Am. Medical Informatics Assoc..

[6]  Denys Proux,et al.  ALADIN : développement d’un outil sémantique d’analyse des documents textuels médicaux pour la détection d’infections associées aux soins , 2012 .

[7]  Joshua C. Denny,et al.  An Evaluation of the NQF Quality Data Model for Representing Electronic Health Record Driven Phenotyping Algorithms , 2012, AMIA.

[8]  N. Bossard,et al.  Analyse critique des données du PMSI pour l’épidémiologie des cancers : une approche longitudinale devient possible , 2011 .

[9]  Stéfan Jacques Darmoni,et al.  Codage standardisé de données médicales textuelles à l’aide d’un serveur multi-terminologique de santé: Exemple d’application en épidémiologie hospitalière , 2011 .

[10]  A. Schott,et al.  [Critical analysis of French DRG based information system (PMSI) databases for the epidemiology of cancer: a longitudinal approach becomes possible]. , 2011, Revue d'epidemiologie et de sante publique.