Tunable and augmented plasmon resonances of Au∕SiO2∕Au nanodisks

The plasmon resonance of Au∕SiO2 multilayered nanodisks was studied using light scattering spectroscopy and numerical calculations. Compared to single layered Au nanodisks, multilayered nanodisks exhibit several distinctive properties including significantly enhanced plasmon resonances and tunable resonance wavelengths which can be tailored to desired values by simply varying dielectric layer thickness while the particle diameter is kept constant. Numerical calculations show that slicing one metal layer into metal multilayers leads to higher scattering intensity and more “hot spots,” or regions of strong field enhancement. This tunable and augmented plasmon resonance holds a great potential in the applications of surface-enhanced Raman scattering (SERS).

[1]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[2]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[3]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[4]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[5]  V. Shalaev,et al.  Theory of Nonlinear Optical Responses in Metal-Dielectric Composites , 2002 .

[6]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[7]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[8]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[9]  Emil Prodan,et al.  Electronic Structure and Optical Properties of Gold Nanoshells , 2003 .

[10]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[11]  H. Levinstein,et al.  Determination of Compensation Density by Hall and Mobility Analysis in Copper-Doped Germanium , 1972 .

[12]  David R. Smith,et al.  Composite Plasmon Resonant Nanowires , 2002 .

[13]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[14]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[15]  David R. Smith,et al.  Single crystal silver nanowires prepared by the metal amplification method , 2002 .

[16]  David A. Schultz,et al.  Single-target molecule detection with nonbleaching multicolor optical immunolabels. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Dereux,et al.  Imaging the local density of states of optical corrals. , 2002, Physical review letters.

[18]  Qi-Huo Wei,et al.  Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains , 2004 .

[19]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[20]  D. Shao,et al.  Surface-plasmon-assisted nanoscale photolithography by polarized light , 2005 .

[21]  B. Draine,et al.  User Guide for the Discrete Dipole Approximation Code DDSCAT (Version 5a10) , 2000, astro-ph/0008151.

[22]  F J García de Abajo,et al.  Optical properties of gold nanorings. , 2003, Physical review letters.

[23]  Hideki T. Miyazaki,et al.  Resonant light scattering from individual Ag nanoparticles and particle pairs , 2002 .