Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver

This paper proposes a medium access control (MAC) protocol for ad hoc wireless networks that utilizes multiple channels dynamically to improve performance. The IEEE 802.11 standard allows for the use of multiple channels available at the physical layer, but its MAC protocol is designed only for a single channel. A single-channel MAC protocol does not work well in a multi-channel environment, because of the multi-channel hidden terminal problem . Our proposed protocol enables hosts to utilize multiple channels by switching hannels dynamically, thus increasing network throughput. The protocol requires only one transceiver per host, but solves the multi-channel hidden terminal problem using temporal synchronization. Our scheme improves network throughput signifiantly, especially when the network is highly congested. The simulation results show that our protocol successfully exploits multiple hannels to achieve higher throughput than IEEE 802.11. Also, the performance of our protocol is comparable to another multi-hannel MAC protocol that requires multiple transceivers per host. Since our protocol requires only one transceiver per host, it an be implemented with a hardware complexity comparable to IEEE 802.11.

[1]  Adam Wolisz,et al.  Power-saving mechanisms in emerging standards for wireless LANs: the MAC level perspective , 1998, IEEE Wirel. Commun..

[2]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[3]  J. J. Garcia-Luna-Aceves,et al.  A receiver-initiated collision-avoidance protocol for multi-channel networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[4]  Nj Piscataway,et al.  Wireless LAN medium access control (MAC) and physical layer (PHY) specifications , 1996 .

[5]  L. Kleinrock,et al.  Packet Switching in Radio Channels : Part Il-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution , 2022 .

[6]  Robert E. Hiromoto,et al.  A MAC protocol for mobile ad hoc networks using directional antennas , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[7]  Nitin H. Vaidya,et al.  An energy efficient MAC protocol for wireless LANs , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[8]  Yu-Chee Tseng,et al.  Power-saving protocols for IEEE 802.11-based multi-hop ad hoc networks , 2003, Comput. Networks.

[9]  Ka Lun Eddie Law,et al.  A Dynamic Multi-Channel MAC for Ad Hoc LAN , 2002 .

[10]  Jun Zhuang,et al.  A multichannel CSMA MAC protocol for multihop wireless networks , 1999, WCNC. 1999 IEEE Wireless Communications and Networking Conference (Cat. No.99TH8466).

[11]  Yu-Chee Tseng,et al.  A Dynamic Multi-Channel MAC for Ad-Hoc LAN , 2000 .

[12]  Voon Chin Phua,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1999 .

[13]  Jing Deng,et al.  Dual busy tone multiple access (DBTMA): a new medium access control for packet radio networks , 1998, ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384).

[14]  J. Mcneff The global positioning system , 2002 .

[15]  Yu-Chee Tseng,et al.  A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile ad hoc networks , 2000, Proceedings International Symposium on Parallel Architectures, Algorithms and Networks. I-SPAN 2000.

[16]  I. A. Getting,et al.  The Global Positioning System , 1993 .

[17]  Samir Ranjan Das,et al.  A multichannel CSMA MAC protocol with receiver-based channel selection for multihop wireless networks , 2001, Proceedings Tenth International Conference on Computer Communications and Networks (Cat. No.01EX495).

[18]  J. J. Garcia-Luna-Aceves,et al.  Hop-reservation multiple access (HRMA) for ad-hoc networks , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).

[19]  Samir R. Das,et al.  Multichannel CSMA with signal power-based channel selection for multihop wireless networks , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).