Three-dimensional light manipulation by plasmonic nanostructure

Nanobump structures are fabricated on the gold thin film by femtosecond laser direct writing (fs-LDW) technique. The height and diameter of the gold nanobump are about 30nm, and 400 nm, respectively. The scattering light of surface plasmon wave radiated from a nanobump is observed using a total internal reflection microscopy. A quarter-circle structure composed of nanobumps is designed and produced to manipulate scattering light into specific pattern: The focusing and diverging of the quarter circular structure in three dimensional space are demonstrated. The polarization properties of focusing spot are also examined.

[1]  A. Maradudin,et al.  Nano-optics of surface plasmon polaritons , 2005 .

[2]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[3]  Din Ping Tsai,et al.  Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks. , 2006, Optics express.

[4]  Masud Mansuripur,et al.  Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films. , 2011, Optics express.

[5]  J. Heber Plasmonics: Surfing the wave , 2009, Nature.

[6]  Masud Mansuripur,et al.  Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography. , 2010, Optics express.

[7]  M. Ohtsu,et al.  Nanophotonics using optical near fields , 2006 .

[8]  Focusing surface plasmons to multiple focal spots with a launching diffraction grating , 2009 .

[9]  Zengbo Wang,et al.  Ultrafast-laser-induced parallel phase-change nanolithography , 2006 .

[10]  W. T. Chen,et al.  Electromagnetic energy vortex associated with sub-wavelength plasmonic Taiji marks. , 2010, Optics express.

[11]  C. H. Chu,et al.  Imaging of Recording Marks and Their Jitters With Different Writing Strategy and Terminal Resistance of Optical Output , 2009, IEEE Transactions on Magnetics.

[12]  J. Pearson,et al.  Subwavelength focusing and guiding of surface plasmons. , 2005, Nano letters.

[13]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[14]  Din Ping Tsai,et al.  Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. , 2011, Optics express.

[15]  A. Hohenau,et al.  Surface Plasmon Polariton Mach–Zehnder Interferometer and Oscillation Fringes , 2006, 1002.0746.

[16]  Masud Mansuripur,et al.  Fabrication of phase-change Ge2Sb2Te5 nano-rings. , 2011, Optics express.

[17]  ScienceDirect Nanomedicine : nanotechnology, biology and medicine. , 2005 .

[18]  F. García-Vidal,et al.  Transformation optics for plasmonics. , 2010, Nano letters.

[19]  Xiang Zhang,et al.  Transformational plasmon optics. , 2010, Nano letters.

[20]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[21]  F. H. Ho,et al.  Nonlinear Optical Absorption in the AgOx-Type Super-Resolution Near-Field Structure. , 2001 .

[22]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[23]  A. Maradudin,et al.  Scattering of Surface Plasmon Polaritons by a Circularly Symmetric Surface Defect , 1997 .

[24]  Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects , 1999, cond-mat/9904347.

[25]  J. Greffet,et al.  Huygens-Fresnel principle for surface plasmons. , 2009, Optics express.

[26]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[27]  Nikolay I. Zheludev,et al.  Chalcogenide glasses in active plasmonics , 2010 .