Protein Building Blocks and the Expansion of the Genetic Code

The proteins of all known organisms are built of a set of 20 canonical amino acids prescribed by the genetic code. Many more amino acids occur in nature but they are excluded from ribosomal translation. Nevertheless, nature exploits their vast chemical diversity for the production of highly bioactive peptides by non-ribosomal biosynthesis routes. The extraordinarily rich structural and functional repertoire of the noncanonical amino acids holds great promise for the future of protein engineering, yet we have only just begun to tap the cornucopia of noncanonical building blocks for the biosynthesis of synthetic proteins.

[1]  M. Ibba,et al.  Mistranslation of the genetic code , 2014, FEBS letters.

[2]  E. Schuman,et al.  Cell-selective metabolic labeling of proteins. , 2009, Nature chemical biology.

[3]  Sun-Gu Lee,et al.  Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues. , 2011, Molecular bioSystems.

[4]  Carlos G. Acevedo-Rocha,et al.  Lipase Congeners Designed by Genetic Code Engineering , 2011 .

[5]  R. Krishnakumar,et al.  Experimental challenges of sense codon reassignment: An innovative approach to genetic code expansion , 2014, FEBS letters.

[6]  M. Simonović,et al.  Synthesis and decoding of selenocysteine and human health , 2012, Croatian medical journal.

[7]  Andrew B. Martin,et al.  Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Swartz A PURE approach to constructive biology , 2001, Nature Biotechnology.

[9]  P. Kast,et al.  Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. , 1991, Journal of molecular biology.

[10]  David H. Snydacker,et al.  Positional effects of monofluorinated phenylalanines on histone acetyltransferase stability and activity. , 2009, Bioorganic & medicinal chemistry letters.

[11]  S. Mendo,et al.  Congeneric lantibiotics from ribosomal in vivo peptide synthesis with noncanonical amino acids. , 2012, Angewandte Chemie.

[12]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[13]  Robert Finking,et al.  Biosynthesis of nonribosomal peptides , 2003 .

[14]  Nediljko Budisa,et al.  Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins , 2014, Molecules.

[15]  Bradley Charles Bundy,et al.  Enhanced enzyme stability through site-directed covalent immobilization. , 2015, Journal of biotechnology.

[16]  Joel S. Bader,et al.  Synthetic chromosome arms function in yeast and generate phenotypic diversity by design , 2011, Nature.

[17]  A. Böck,et al.  Selenoprotein synthesis: an expansion of the genetic code. , 1991, Trends in biochemical sciences.

[18]  E J Milner-White,et al.  Pyrrolidine ring puckering in cis and trans-proline residues in proteins and polypeptides. Different puckers are favoured in certain situations. , 1992, Journal of molecular biology.

[19]  T. Kigawa,et al.  Site-specific incorporation of 4-iodo-L-phenylalanine through opal suppression. , 2010, Journal of biochemistry.

[20]  Isolation, purification, and characterization of anticapsin. , 1970, The Journal of antibiotics.

[21]  K. Rodgers,et al.  Misincorporation of amino acid analogues into proteins by biosynthesis. , 2008, The international journal of biochemistry & cell biology.

[22]  Hiroaki Suga,et al.  A tRNA aminoacylation system for non-natural amino acids based on a programmable ribozyme , 2002, Nature Biotechnology.

[23]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[24]  Colin J Jackson,et al.  Improving a natural enzyme activity through incorporation of unnatural amino acids. , 2011, Journal of the American Chemical Society.

[25]  P. Schultz,et al.  The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination , 2004, Nature Biotechnology.

[26]  C. Walsh Blurring the lines between ribosomal and nonribosomal peptide scaffolds. , 2014, ACS chemical biology.

[27]  N. Budisa,et al.  In vivo double and triple labeling of proteins using synthetic amino acids. , 2010, Angewandte Chemie.

[28]  R. Kolter,et al.  Biosynthesis of Piperazic Acid via N5‐Hydroxy‐Ornithine in Kutzneria spp. 744 , 2012, Chembiochem : a European journal of chemical biology.

[29]  P. Schultz,et al.  A general approach for the generation of orthogonal tRNAs. , 2001, Chemistry & biology.

[30]  P. Schultz,et al.  A biosynthetic route to dehydroalanine-containing proteins. , 2007, Angewandte Chemie.

[31]  D. Tirrell,et al.  Presentation and detection of azide functionality in bacterial cell surface proteins. , 2004, Journal of the American Chemical Society.

[32]  Andrew B. Martin,et al.  Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. , 2002, Journal of the American Chemical Society.

[33]  P. Schultz,et al.  The selective incorporation of alkenes into proteins in Escherichia coli. , 2002, Angewandte Chemie.

[34]  Peter G Schultz,et al.  An expanded genetic code with a functional quadruplet codon. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  C. Bertozzi,et al.  Live‐Cell Imaging of Cellular Proteins by a Strain‐Promoted Azide–Alkyne Cycloaddition , 2010, Chembiochem : a European journal of chemical biology.

[36]  E. Schuman,et al.  Mutant methionyl-tRNA synthetase from bacteria enables site-selective N-terminal labeling of proteins expressed in mammalian cells , 2013, Proceedings of the National Academy of Sciences.

[37]  Frances H Arnold,et al.  Global incorporation of norleucine in place of methionine in cytochrome P450 BM‐3 heme domain increases peroxygenase activity , 2003, Biotechnology and bioengineering.

[38]  R Giegé,et al.  Universal rules and idiosyncratic features in tRNA identity. , 1998, Nucleic acids research.

[39]  Yi Tang,et al.  Fluorinated Coiled-Coil Proteins Prepared In Vivo Display Enhanced Thermal and Chemical Stability. , 2001, Angewandte Chemie.

[40]  G. Ravichandran,et al.  Lithographic patterning of photoreactive cell-adhesive proteins. , 2007, Journal of the American Chemical Society.

[41]  D. Söll,et al.  Expanding the Genetic Code of Escherichia coli with Phosphoserine , 2011, Science.

[42]  Byung C. Yoon,et al.  Local Translation of Extranuclear Lamin B Promotes Axon Maintenance , 2012, Cell.

[43]  Peter G Schultz,et al.  Protein evolution with an expanded genetic code , 2008, Proceedings of the National Academy of Sciences.

[44]  P. Schultz,et al.  Site-specific incorporation of a redox-active amino acid into proteins. , 2003, Journal of the American Chemical Society.

[45]  Susan E. Cellitti,et al.  Site-specific labeling of proteins with NMR-active unnatural amino acids , 2010, Journal of biomolecular NMR.

[46]  Benjamin Thomas,et al.  QuaNCAT: quantitating proteome dynamics in primary cells , 2013, Nature Methods.

[47]  Allie C. Obermeyer,et al.  Rapid chemoselective bioconjugation through oxidative coupling of anilines and aminophenols. , 2011, Journal of the American Chemical Society.

[48]  Nediljko Budisa,et al.  Residue-specific global fluorination of Candida antarctica lipase B in Pichia pastoris. , 2010, Molecular bioSystems.

[49]  M. Rubini,et al.  Rational Design of Protein Stability: Effect of (2S,4R)-4-Fluoroproline on the Stability and Folding Pathway of Ubiquitin , 2011, PloS one.

[50]  Reijer Lenstra,et al.  Evolution of the genetic code through progressive symmetry breaking. , 2014, Journal of theoretical biology.

[51]  Arne Skerra,et al.  Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting. , 2010, Journal of molecular biology.

[52]  Michael J. Sweredoski,et al.  Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT) , 2012, Proteomics.

[53]  W. Chilton,et al.  A chloro amino acid from Amanita solitaria , 1972 .

[54]  R. Mehl,et al.  Enhancing the utility of unnatural amino acid synthetases by manipulating broad substrate specificity. , 2009, Molecular bioSystems.

[55]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[56]  J. Glass,et al.  Transfer RNA Misidentification Scrambles Sense Codon Recoding , 2013, Chembiochem : a European journal of chemical biology.

[57]  T. Carell,et al.  A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. , 2012, Angewandte Chemie.

[58]  Michael J. Sweredoski,et al.  Quantitative, Time-Resolved Proteomic Analysis by Combining Bioorthogonal Noncanonical Amino Acid Tagging and Pulsed Stable Isotope Labeling by Amino Acids in Cell Culture* , 2014, Molecular & Cellular Proteomics.

[59]  Jin Kim Montclare,et al.  Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase , 2011, Chembiochem : a European journal of chemical biology.

[60]  Orthogonal alkynyl amino acid reporter for selective labeling of bacterial proteomes during infection. , 2010, Angewandte Chemie.

[61]  N. Budisa,et al.  Expanding and engineering the genetic code in a single expression experiment. , 2011, Chembiochem : a European journal of chemical biology.

[62]  S. Brenner,et al.  Genetic Code: The ‘Nonsense’ Triplets for Chain Termination and their Suppression , 1965, Nature.

[63]  Peter G Schultz,et al.  Unnatural amino acid mutagenesis of green fluorescent protein. , 2003, The Journal of organic chemistry.

[64]  J. Bae,et al.  Synthetic Biology of Proteins: Tuning GFPs Folding and Stability with Fluoroproline , 2008, PloS one.

[65]  Carlos G. Acevedo-Rocha,et al.  biological tool for lipase-catalysed reactions in hostile environments† , 2013 .

[66]  Ilka U. Heinemann,et al.  Near‐cognate suppression of amber, opal and quadruplet codons competes with aminoacyl‐tRNAPyl for genetic code expansion , 2012, FEBS letters.

[67]  Nediljko Budisa,et al.  In vivo incorporation of multiple noncanonical amino acids into proteins. , 2011, Angewandte Chemie.

[68]  A. Marx,et al.  Replacing 32 proline residues by a noncanonical amino acid results in a highly active DNA polymerase. , 2010, Journal of the American Chemical Society.

[69]  V. Gladyshev,et al.  The microbial selenoproteome of the Sargasso Sea , 2005, Genome Biology.

[70]  J. Alix Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. , 1982, Microbiological reviews.

[71]  Shun Zheng,et al.  Manipulation of enzyme properties by noncanonical amino acid incorporation , 2012, Biotechnology journal.

[72]  Qian Wang,et al.  Expanding the genetic code for biological studies. , 2009, Chemistry & biology.

[73]  S. Yokoyama,et al.  Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. , 2008, Biochemical and biophysical research communications.

[74]  B. E. Kimmel,et al.  Optimized clinical performance of growth hormone with an expanded genetic code , 2011, Proceedings of the National Academy of Sciences.

[75]  Dieter Söll,et al.  Natural expansion of the genetic code. , 2007, Nature chemical biology.

[76]  Cohen Gn,et al.  Total replacement of methionine by selenomethionine in the proteins of Escherichia coli , 1957 .

[77]  D. Söll,et al.  Upgrading protein synthesis for synthetic biology. , 2013, Nature chemical biology.

[78]  V. Gladyshev,et al.  Selenoproteins: molecular pathways and physiological roles. , 2014, Physiological reviews.

[79]  Ilka U. Heinemann,et al.  Carbon source-dependent expansion of the genetic code in bacteria , 2012, Proceedings of the National Academy of Sciences.

[80]  G. Cohen,et al.  Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. , 1957, Biochimica et biophysica acta.

[81]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[82]  S. Seah,et al.  Functional Characterization of an Aminotransferase Required for Pyoverdine Siderophore Biosynthesis in Pseudomonas aeruginosa PAO1 , 2004, Journal of bacteriology.

[83]  J. V. Hest,et al.  Efficient incorporation of unsaturated methionine analogues into proteins in vivo , 2000 .

[84]  J. Krzycki The direct genetic encoding of pyrrolysine. , 2005, Current opinion in microbiology.

[85]  E. Schuman,et al.  BONCAT: metabolic labeling, click chemistry, and affinity purification of newly synthesized proteomes. , 2015, Methods in molecular biology.

[86]  M. Reetz Lipases as practical biocatalysts. , 2002, Current opinion in chemical biology.

[87]  P. Schultz,et al.  In vivo incorporation of an alkyne into proteins in Escherichia coli. , 2005, Bioorganic & medicinal chemistry letters.

[88]  M. Ibba,et al.  Aminoacyl-tRNA synthesis and translational quality control. , 2009, Annual review of microbiology.

[89]  A. Stempel,et al.  ANTIMETABOLITES PRODUCED BY MICROORGANISMS. II , 1971 .

[90]  J. Yates,et al.  RNA-Dependent Cysteine Biosynthesis in Archaea , 2005, Science.

[91]  S. Yokoyama,et al.  Genetic encoding of 3-iodo-L-tyrosine in Escherichia coli for single-wavelength anomalous dispersion phasing in protein crystallography. , 2009, Structure.

[92]  C. D. de Koster,et al.  Selective enrichment of azide-containing peptides from complex mixtures. , 2009, Journal of proteome research.

[93]  A. V. Lobanov,et al.  Genetic Code Supports Targeted Insertion of Two Amino Acids by One Codon , 2009, Science.

[94]  V. Conticello,et al.  Cotranslational Incorporation of a Structurally Diverse Series of Proline Analogues in an Escherichia coli Expression System , 2004, Chembiochem : a European journal of chemical biology.

[95]  D. Tirrell,et al.  Cell surface labeling of Escherichia coli via copper(I)-catalyzed [3+2] cycloaddition. , 2003, Journal of the American Chemical Society.

[96]  David G. Longstaff,et al.  Direct charging of tRNACUA with pyrrolysine in vitro and in vivo , 2004, Nature.

[97]  J. Chin,et al.  Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion , 2007, Nature Biotechnology.

[98]  Nediljko Budisa,et al.  Azatryptophans endow proteins with intrinsic blue fluorescence , 2008, Proceedings of the National Academy of Sciences.

[99]  Katrin Eichelbaum,et al.  Selective enrichment of newly synthesized proteins for quantitative secretome analysis , 2012, Nature Biotechnology.

[100]  Peter G Schultz,et al.  A genetically encoded photocaged tyrosine. , 2006, Angewandte Chemie.

[101]  P. Schultz,et al.  Genetic Incorporation of Unnatural Amino Acids into Proteins in Mycobacterium tuberculosis , 2010, PloS one.

[102]  Peter G Schultz,et al.  Protein conjugation with genetically encoded unnatural amino acids. , 2013, Current opinion in chemical biology.

[103]  David A. Tirrell,et al.  Expanding the Scope of Protein Biosynthesis by Altering the Methionyl‐tRNA Synthetase Activity of a Bacterial Expression Host , 2000 .

[104]  Robert Huber,et al.  Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins. , 2003, Journal of molecular biology.

[105]  T. Carell,et al.  Synthesis of Threefold Glycosylated Proteins using Click Chemistry and Genetically Encoded Unnatural Amino Acids , 2009, Chembiochem : a European journal of chemical biology.

[106]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[107]  Matthew D. Schultz,et al.  RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites , 2011, Nature chemical biology.

[108]  R. Huber,et al.  Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein , 2009, Proceedings of the National Academy of Sciences.

[109]  D. Oesterhelt,et al.  Directed manipulation of a flavoprotein photocycle. , 2013, Angewandte Chemie.

[110]  Andrew B. Martin,et al.  Generation of a bacterium with a 21 amino acid genetic code. , 2003, Journal of the American Chemical Society.

[111]  I. Fotheringham,et al.  Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12. , 1999, Bioorganic & medicinal chemistry.

[112]  Duane E. Prasuhn,et al.  Plasma clearance of bacteriophage Qbeta particles as a function of surface charge. , 2008, Journal of the American Chemical Society.

[113]  A. Asatoor The occurrence of εN-methyllysine in human urine , 1969 .

[114]  Rudi Fasan,et al.  Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts by Unnatural Amino Acid Mutagenesis , 2014, Chembiochem : a European journal of chemical biology.

[115]  Yan Zhang,et al.  Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies* , 2005, Journal of Biological Chemistry.

[116]  P. Schultz,et al.  Genetically encoded alkenes in yeast. , 2010, Angewandte Chemie.

[117]  L. Fowden Amino acid complement of plants , 1972 .

[118]  E. Schuman,et al.  Non-canonical amino acid labeling in vivo to visualize and affinity purify newly synthesized proteins in larval zebrafish. , 2012, ACS chemical neuroscience.

[119]  P. Schultz,et al.  Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. , 2003, Journal of the American Chemical Society.

[120]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[121]  G. Dickens,et al.  The tryptophan hydroxylase of Chromobacterium violaceum. , 1974, The Journal of biological chemistry.

[122]  T. Steitz,et al.  The roles of RNA in the synthesis of protein. , 2011, Cold Spring Harbor perspectives in biology.

[123]  M. Nirenberg,et al.  Release factors differing in specificity for terminator codons. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. Chin,et al.  A Method for Genetically Installing Site-Specific Acetylation in Recombinant Histones Defines the Effects of H3 K56 Acetylation , 2009, Molecular cell.

[125]  P. Schimmel,et al.  Ribozyme programming extends the protein code , 2002, Nature Biotechnology.

[126]  Peter G. Schultz,et al.  Genomically Recoded Organisms Expand Biological Functions , 2013, Science.

[127]  K. Kirshenbaum,et al.  Breaking the degeneracy of the genetic code. , 2003, Journal of the American Chemical Society.

[128]  Gregory Kucherov,et al.  Diversity of Monomers in Nonribosomal Peptides: towards the Prediction of Origin and Biological Activity , 2010, Journal of bacteriology.

[129]  Nediljko Budisa,et al.  Prolegomena to future experimental efforts on genetic code engineering by expanding its amino acid repertoire. , 2004, Angewandte Chemie.

[130]  M. Schauer,et al.  Parallel Incorporation of Different Fluorinated Amino Acids: On the Way to “Teflon” Proteins , 2010, Chembiochem : a European journal of chemical biology.

[131]  E. Lemke,et al.  Genetically Encoded Copper-Free Click Chemistry , 2011, Angewandte Chemie.

[132]  W. Liu,et al.  Nonsense and Sense Suppression Abilities of Original and Derivative Methanosarcina mazei Pyrrolysyl-tRNA Synthetase-tRNAPyl Pairs in the Escherichia coli BL21(DE3) Cell Strain , 2013, PloS one.

[133]  Jin Kim Montclare,et al.  Evolving proteins of novel composition. , 2006, Angewandte Chemie.

[134]  G L Gilliland,et al.  Enzymes harboring unnatural amino acids: mechanistic and structural analysis of the enhanced catalytic activity of a glutathione transferase containing 5-fluorotryptophan. , 1998, Biochemistry.

[135]  E. Schuman,et al.  Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity. , 2013, Current opinion in chemical biology.

[136]  A. Welter,et al.  Nouveaux acides amines libres de Afzelia bella: trans-hydroxy-4-L-proline et trans-carboxy-4-L-proline , 1978 .

[137]  J. Krzycki,et al.  Functional context, biosynthesis, and genetic encoding of pyrrolysine. , 2011, Current opinion in microbiology.

[138]  P. Schultz,et al.  Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. , 2013, Angewandte Chemie.

[139]  T. Muir,et al.  Genetically encoded 1,2-aminothiols facilitate rapid and site-specific protein labeling via a bio-orthogonal cyanobenzothiazole condensation. , 2011, Journal of the American Chemical Society.

[140]  Peter G Schultz,et al.  Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[141]  E. A. Kean,et al.  Biosynthesis of l-β-(methylenecyclopropyl)-alanine (hypoglycin) in Blighia sapida , 1981 .

[142]  T. Yoo,et al.  Evolution of a fluorinated green fluorescent protein , 2007, Proceedings of the National Academy of Sciences.

[143]  David H Russell,et al.  A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. , 2010, Angewandte Chemie.

[144]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[145]  Sylvie Garneau-Tsodikova,et al.  Protein posttranslational modifications: the chemistry of proteome diversifications. , 2005, Angewandte Chemie.

[146]  J. Kane,et al.  Biosynthesis and incorporation into protein of norleucine by Escherichia coli. , 1989, The Journal of biological chemistry.

[147]  Duane E. Prasuhn,et al.  Unnatural amino acid incorporation into virus-like particles. , 2008, Bioconjugate chemistry.

[148]  Q. Wang,et al.  Selective dye-labeling of newly synthesized proteins in bacterial cells. , 2005, Journal of the American Chemical Society.

[149]  D. Tirrell,et al.  Two-color labeling of temporally defined protein populations in mammalian cells. , 2008, Bioorganic & medicinal chemistry letters.

[150]  S Commans,et al.  Selenocysteine inserting tRNAs: an overview. , 1999, FEMS microbiology reviews.

[151]  P G Schultz,et al.  Expanding the Genetic Code of Escherichia coli , 2001, Science.

[152]  D. Tirrell,et al.  Identification of an expanded set of translationally active methionine analogues in Escherichia coli , 2001, FEBS letters.

[153]  J. Chin,et al.  Expanding the genetic code of Drosophila melanogaster. , 2012, Nature chemical biology.

[154]  Farren J. Isaacs,et al.  Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement , 2011, Science.

[155]  D. Tirrell,et al.  Site-specific incorporation of tryptophan analogues into recombinant proteins in bacterial cells. , 2007, Journal of the American Chemical Society.

[156]  I. Schlichting,et al.  Probing the role of the proximal heme ligand in cytochrome P450cam by recombinant incorporation of selenocysteine , 2009, Proceedings of the National Academy of Sciences.

[157]  Carolyn R Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[158]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[159]  Byung-Gee Kim,et al.  Engineering Transaminase for Stability Enhancement and Site‐Specific Immobilization through Multiple Noncanonical Amino Acids Incorporation , 2015 .

[160]  Peter G Schultz,et al.  Adding new chemistries to the genetic code. , 2010, Annual review of biochemistry.

[161]  Massimo Di Giulio,et al.  The origin of the genetic code: theories and their relationships, a review. , 2005 .

[162]  Cem Albayrak,et al.  Direct polymerization of proteins. , 2014, ACS synthetic biology.

[163]  C. Walsh,et al.  Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. , 2013, Angewandte Chemie.

[164]  P. Kast,et al.  Efficient introduction of aryl bromide functionality into proteins in vivo , 2000, FEBS letters.

[165]  H. Schlüter,et al.  Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. , 2012, Journal of proteomics.

[166]  P. Schultz,et al.  Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris. , 2009, Biochemistry.

[167]  B. Wiltschi,et al.  Fluoro amino acids: A rarity in nature, yet a prospect for protein engineering , 2015, Biotechnology journal.

[168]  N. Budisa,et al.  Expanding the genetic code of Saccharomyces cerevisiae with methionine analogues , 2008, Yeast.

[169]  R. Furter Expansion of the genetic code: Site‐directed p‐fluoro‐phenylalanine incorporation in Escherichia coli , 1998, Protein science : a publication of the Protein Society.

[170]  J. Cleveland,et al.  Chlamydia Species-Dependent Differences in the Growth Requirement for Lysosomes , 2011, PloS one.

[171]  P. Schultz,et al.  Progress toward an expanded eukaryotic genetic code. , 2003, Chemistry & biology.

[172]  James R. Swartz,et al.  High‐level cell‐free synthesis yields of proteins containing site‐specific non‐natural amino acids , 2009, Biotechnology and bioengineering.

[173]  S. Schlesinger,et al.  The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. IV. Substitution of canavanine for arginine. , 1969, The Journal of biological chemistry.

[174]  D. Tirrell,et al.  Noncanonical amino acids in the interrogation of cellular protein synthesis. , 2011, Accounts of chemical research.

[175]  Toshimichi Ikemura,et al.  Codon usage tabulated from international DNA sequence databases: status for the year 2000 , 2000, Nucleic Acids Res..

[176]  P. Schultz,et al.  Addition of the keto functional group to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[177]  D. Söll,et al.  Aminoacyl-tRNA synthesis. , 2000, Annual review of biochemistry.

[178]  Byung-Gee Kim,et al.  Enhancing Thermostability and Organic Solvent Tolerance of ω-Transaminase through Global Incorporation of Fluorotyrosine , 2014 .

[179]  R. Burk,et al.  Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. , 2005, Annual review of nutrition.

[180]  Daniela C Dieterich,et al.  Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Eva Maria Novoa,et al.  Speeding with control: codon usage, tRNAs, and ribosomes. , 2012, Trends in genetics : TIG.

[182]  R. Huber,et al.  Noninvasive tracing of recombinant proteins with "fluorophenylalanine-fingers". , 2000, Analytical biochemistry.

[183]  A. Deiters,et al.  Site-specific incorporation of fluorotyrosines into proteins in Escherichia coli by photochemical disguise. , 2010, Biochemistry.

[184]  M. Rubini,et al.  Probing the role of tryptophans in Aequorea victoria green fluorescent proteins with an expanded genetic code , 2004, Biological chemistry.

[185]  Michael C. Jewett,et al.  Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis , 2014, Front. Chem..

[186]  P. Schultz,et al.  An efficient system for the evolution of aminoacyl-tRNA synthetase specificity , 2002, Nature Biotechnology.

[187]  F. Crick Origin of the Genetic Code , 1967, Nature.

[188]  P. Schultz,et al.  Selective Staudinger Modification of Proteins Containing p‐Azidophenylalanine , 2005, Chembiochem : a European journal of chemical biology.

[189]  G. Rosenthal l-Canavanine Metabolism in Jack Bean, Canavalia ensiformis (L.) DC. (Leguminosae). , 1982, Plant physiology.

[190]  Qing Lin,et al.  Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. , 2012, Angewandte Chemie.

[191]  Carolyn R Bertozzi,et al.  Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[192]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[193]  J. Fisher,et al.  The Natural Occurrence of Ethionine in Bacteria , 1961, The Journal of general physiology.

[194]  Ryan A Mehl,et al.  Improving nature's enzyme active site with genetically encoded unnatural amino acids. , 2006, Journal of the American Chemical Society.

[195]  K. Kirshenbaum,et al.  Biosynthesis of Proteins Incorporating a Versatile Set of Phenylalanine Analogues , 2002, Chembiochem : a European journal of chemical biology.

[196]  Shigeyuki Yokoyama,et al.  Codon reassignment in the Escherichia coli genetic code , 2010, Nucleic acids research.

[197]  P. Schultz,et al.  An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. , 2011, Biochemistry.

[198]  D. Söll,et al.  Rewiring translation for elongation factor Tu-dependent selenocysteine incorporation. , 2013, Angewandte Chemie.

[199]  Mosè Rossi,et al.  Translational recoding in archaea , 2012, Extremophiles.

[200]  E. Schuman,et al.  In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons , 2010, Nature Neuroscience.

[201]  N. Budisa,et al.  Designing novel spectral classes of proteins with a tryptophan-expanded genetic code , 2004, Biological chemistry.

[202]  V. Conticello,et al.  Multiple Site‐Selective Insertions of Noncanonical Amino Acids into Sequence‐Repetitive Polypeptides , 2013, Chembiochem : a European journal of chemical biology.

[203]  S. Hunt,et al.  The Non-Protein Amino Acids , 1985 .

[204]  D. Tirrell,et al.  Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing‐Impaired Leucyl‐tRNA Synthetase , 2009, Chembiochem : a European journal of chemical biology.

[205]  D. Janzen,et al.  A novel means for dealing with L-canavanine, a toxic metabolite. , 1976, Science.

[206]  P. Schultz,et al.  Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. , 2011, Journal of the American Chemical Society.

[207]  M. Jung Enzyme Inhibition by Amino Acids and their Derivatives , 1985 .

[208]  Birgit Wiltschi,et al.  Expressed protein modifications: making synthetic proteins. , 2012, Methods in molecular biology.

[209]  Matthew D. Schultz,et al.  Release Factor One Is Nonessential in Escherichia coli , 2012, ACS chemical biology.

[210]  R. Huber,et al.  Incorporation of β-selenolo[3,2-b]pyrrolyl-alanine into proteins for phase determination in protein X-ray crystallography , 2001 .

[211]  Inchan Kwon,et al.  Tailoring the substrate specificity of yeast phenylalanyl-tRNA synthetase toward a phenylalanine analog using multiple-site-specific incorporation. , 2015, ACS synthetic biology.

[212]  S. L. Mayo,et al.  A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins. , 2002, Journal of the American Chemical Society.

[213]  J. Montclare,et al.  Modulating substrate specificity of histone acetyltransferase with unnatural amino acids. , 2011, Molecular bioSystems.

[214]  P G Schultz,et al.  A general method for site-specific incorporation of unnatural amino acids into proteins. , 1989, Science.

[215]  In Vivo Incorporation of Non‐canonical Amino Acids by Using the Chemical Aminoacylation Strategy: A Broadly Applicable Mechanistic Tool , 2014, Chembiochem : a European journal of chemical biology.

[216]  C. Ressler Isolation and identification from common vetch of the neurotoxin beta-cyano-L-alanine, a possible factor in neurolathyrism. , 1962, The Journal of biological chemistry.

[217]  S. Udenfriend,et al.  TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. , 1964, The Journal of biological chemistry.

[218]  P. Hoffmann,et al.  The human selenoproteome: recent insights into functions and regulation , 2009, Cellular and Molecular Life Sciences.

[219]  Richard E. Moore,et al.  Biosynthesis of 4-methylproline in cyanobacteria: cloning of nosE and nosF genes and biochemical characterization of the encoded dehydrogenase and reductase activities. , 2003, The Journal of organic chemistry.

[220]  Zhiyong Wang,et al.  The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives. , 2011, Molecular bioSystems.

[221]  W. Paik,et al.  Studies on the origin of epsilon-N-methyl-L-lysine in protein. , 1965, The Journal of biological chemistry.

[222]  J. V. van Hest,et al.  "Clickable" elastins: elastin-like polypeptides functionalized with azide or alkyne groups. , 2009, Chemical communications.

[223]  P. Dawson,et al.  Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. , 2008, Bioconjugate chemistry.

[224]  Peter G Schultz,et al.  An Expanded Eukaryotic Genetic Code , 2003, Science.

[225]  H. Musso,et al.  New Naturally Occurring Amino Acids , 1983 .

[226]  Peter G Schultz,et al.  A genetically encoded photocaged amino acid. , 2004, Journal of the American Chemical Society.

[227]  Jeffery M. Tharp,et al.  Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. , 2014, Biochimica et biophysica acta.

[228]  E. Schuman,et al.  Fluorescence visualization of newly synthesized proteins in mammalian cells. , 2006, Angewandte Chemie.

[229]  D. Tirrell,et al.  Biosynthesis of a highly stable coiled-coil protein containing hexafluoroleucine in an engineered bacterial host. , 2001, Journal of the American Chemical Society.

[230]  R C Cox,et al.  Incorporation of an unnatural amino acid in the active site of porcine pancreatic phospholipase A2. Substitution of histidine by 1,2,4-triazole-3-alanine yields an enzyme with high activity at acidic pH. , 1996, Protein engineering.