The optical kerr effect in small metal particles and metal colloids: The case of gold

We first consider theoretically the various mechanisms contributing to the Kerr nonlinearity in small gold particles. The major ones are the conduction electron intraband contribution, the saturation of direct interband transitions and the change in dielectric constant due to hot photoexcited electrons. We present experimental results obtained using optical phase conjugation in gold-doped glasses. By varying several parameters, we were able to ascertain the origin of the nonlinear response: the main contributions are the hotelectron and the interband contributions. All experimental results, including saturation behaviour, are fully understood.

[1]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[2]  D. Ricard,et al.  Optical phase conjugation in semiconductor-doped glasses , 1985 .

[3]  B. O. Seraphin,et al.  Relativistic Band Calculation and the Optical Properties of Gold , 1971 .

[4]  R. W. Hellwarth,et al.  Third-order optical susceptibilities of liquids and solids , 1977 .

[5]  U. Kreibig The transition cluster-solid state in small gold particles , 1978 .

[6]  Y. Zel’dovich,et al.  Principles of phase conjugation , 1985 .

[7]  P. Roussignol,et al.  Surface-mediated enhancement of optical phase conjugation in metal colloids. , 1985, Optics letters.

[8]  U. Kreibig,et al.  Surface plasma resonances in small spherical silver and gold particles , 1970 .

[9]  R. Doremus Optical Properties of Small Gold Particles , 1964 .

[10]  N. V. Smith,et al.  Photoemission Properties of Simple Metals , 1970 .

[11]  W. K. Burns,et al.  Third-Harmonic Generation in Absorbing Media of Cubic or Isotropic Symmetry , 1971 .

[12]  U. Kreibig,et al.  The limitation of electron mean free path in small silver particles , 1969 .

[13]  Arisato Kawabata,et al.  Electronic Properties of Fine Metallic Particles. II. Plasma Resonance Absorption , 1966 .

[14]  R. Fisher Optical Phase Conjugation , 1983 .

[15]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[16]  D. Ricard,et al.  Nonlinear optical properties of commercial semiconductor-doped glasses , 1987 .

[17]  G. Eesley,et al.  Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. , 1986, Physical review. B, Condensed matter.

[18]  W. Doyle Absorption of Light by Colloids in Alkali Halide Crystals , 1958 .

[19]  U. Kreibig,et al.  Small silver particles in photosensitive glass: Their nucleation and growth , 1976 .

[20]  François Hache,et al.  Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects , 1986 .

[21]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[22]  R. Ruppin,et al.  Size and Shape Effects on the Broadening of the Plasma Resonance Absorption in Metals , 1976 .

[23]  W. Ekardt,et al.  Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model , 1984 .

[24]  Basab B. Dasgupta,et al.  Polarizability of a small sphere including nonlocal effects , 1981 .

[25]  Fujimoto,et al.  Femtosecond studies of nonequilibrium electronic processes in metals. , 1987, Physical review letters.

[26]  Adelbert Owyoung,et al.  Absolute determination of the nonlinear susceptibilityχ3 via two-beam nonlinear interferometry , 1976 .