An efficient boundary element formulation for doubly-periodic two-dimensional Stokes flow with pressure boundary conditions

Abstract We present an efficient formulation of the boundary element method (BEM) for calculation of two-dimensional pressure-driven Stokes flow in a doubly-periodic domain. In contrast to similar methods which require a priori knowledge of the mean fluid velocity, this formulation is based on knowledge of the mean pressure gradient only. We present a method of calculating the permeability tensor without the need to specify either mean velocity or pressure gradient. We discuss optimality of the splitting parameter in the doubly-periodic Green's function, with regard to the numerical overhead required for the BEM, and in most cases find a fold increase in computational efficiency compared to the splitting parameter used in standard BEM formulations.

[1]  Multi-scale calculation of settling speed of coarse particles by accelerated Stokesian dynamics without adjustable parameter , 2009 .

[2]  Jeng-Tzong Chen,et al.  A Practical Guide to Boundary Element Methods with the Software Library BEMLIB , 2002 .

[3]  Carlo Somigliana,et al.  Sopra l'equilibrio di un corpo elastico isotropo , 1885 .

[4]  M. A. Jaswon,et al.  Integral equation methods in potential theory and elastostatics , 1977 .

[5]  Slow Viscous Flow Between Hexagonal Cylinders , 2002 .

[6]  Hoang-Ngan Nguyen,et al.  A fast method to compute triply-periodic Brinkman flows , 2015 .

[7]  E. Betti Teoria della elasticita , 1872 .

[8]  Stokes flow through an array of rectangular fibers , 1996 .

[9]  Ludvig af Klinteberg,et al.  Fast Ewald summation for Stokesian particle suspensions , 2014 .

[10]  Majid Bahrami,et al.  Analytical determination of viscous permeability of fibrous porous media , 2009 .

[11]  Carlos Alberto Brebbia,et al.  Boundary element methods for potential problems , 1977 .

[12]  Frank J. Rizzo,et al.  An integral equation approach to boundary value problems of classical elastostatics , 1967 .

[13]  G. T. Symm,et al.  Integral equation methods in potential theory. II , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[15]  M. A. Jaswon Integral equation methods in potential theory. I , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  J. Watson,et al.  Effective numerical treatment of boundary integral equations: A formulation for three‐dimensional elastostatics , 1976 .

[17]  H. Hasimoto On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres , 1959, Journal of Fluid Mechanics.

[18]  Peter K. Kitanidis,et al.  Stokes Flow in a Slowly Varying Two-Dimensional Periodic Pore , 1997 .

[19]  Anna-Karin Tornberg,et al.  Spectrally accurate fast summation for periodic Stokes potentials , 2010, J. Comput. Phys..

[20]  C. Pozrikidis Boundary Integral and Singularity Methods for Linearized Viscous Flow: Index , 1992 .

[21]  A. Cheng,et al.  Heritage and early history of the boundary element method , 2005 .

[22]  Andreas Acrivos,et al.  Slow flow past periodic arrays of cylinders with application to heat transfer , 1982 .

[23]  A. Sangani,et al.  A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles , 1994 .

[24]  G. V. D. Vorst,et al.  Integral formulation to simulate the viscous sintering of a two-dimensional lattice of periodic unit cells , 1996 .

[25]  J. Drummond,et al.  Laminar viscous flow through regular arrays of parallel solid cylinders , 1984 .

[26]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[27]  G. Green An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism , 2008, 0807.0088.

[28]  Xiaofan Li,et al.  A numerical study of the shearing motion of emulsions and foams , 1995, Journal of Fluid Mechanics.

[29]  C. Pozrikidis,et al.  Computation of periodic Green's functions of Stokes flow , 1996 .

[30]  Eirik Keilegavlen,et al.  Analysis of Control Volume Heterogeneous Multiscale Methods for Single Phase Flow in Porous Media , 2014, Multiscale Model. Simul..