On linear models for nonlinear systems

Best linear time-invariant (LTI) approximations are analysed for several interesting classes of discrete nonlinear time-invariant systems. These include nonlinear finite impulse response systems and a class of nonsmooth systems called bi-gain systems. The Frechet derivative of a smooth nonlinear system is studied as a potential good LTI model candidate. The Frechet derivative is determined for nonlinear finite memory systems and for a class of Wiener systems. Most of the concrete results are derived in an @?"~ signal setting. Applications to linear controller design, to identification of linear models and to estimation of the size of the unmodelled dynamics are discussed.

[1]  Hüseyin Akçay,et al.  Discrete-time system modelling in with orthonormal basis functions , 2000 .

[2]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[3]  Jonathan R. Partington,et al.  Shift Operator Induced Approximations of Delay Systems , 1999 .

[4]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  Jari M. Böling,et al.  Multimodel identification for control of an ill-conditioned distillation column , 1996 .

[6]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[7]  Bozenna Pasik-Duncan,et al.  Control-oriented system identification: An Hinfinity approach: Jie Chen and Guoxiang Gu; Wiley, New York, 2000, ISBN 0471-32048-X , 2002, Autom..

[8]  Mathukumalli Vidyasagar,et al.  Optimal rejection of persistent bounded disturbances , 1986 .

[9]  Le Yi Wang,et al.  Time complexity and model complexity of fast identification of continuous-time LTI systems , 1999, IEEE Trans. Autom. Control..

[10]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[11]  Jonathan R. Partington,et al.  Laguerre and Kautz shift approximations of delay systems , 1999 .

[12]  P.M. Mäkilä,et al.  On system gains for linear and nonlinear systems , 2002, Syst. Control. Lett..

[13]  P.M. Mäkilä,et al.  Worst-case control-relevant identification , 1995, Autom..

[14]  B. Anderson,et al.  Nonnegative realization of a linear system with nonnegative impulse response , 1996 .

[15]  P. Wellstead,et al.  Analyzing piecewise linear dynamical systems , 1995 .

[16]  J. Pearson,et al.  l^{1} -optimal feedback controllers for MIMO discrete-time systems , 1987 .

[17]  C. DeWitt-Morette,et al.  Analysis, manifolds, and physics , 1977 .

[18]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[19]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[20]  P. M. Makila State space identification of stable systems , 1999 .

[21]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[22]  Lennart Ljung,et al.  Estimating Linear Time-invariant Models of Nonlinear Time-varying Systems , 2001, Eur. J. Control.

[23]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[24]  Jonathan R. Partington,et al.  Interpolation, identification, and sampling , 1997 .

[25]  Anders Rantzer,et al.  Piecewise linear quadratic optimal control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[26]  Tore K. Gustafsson,et al.  Modelling of uncertain systems with application to robust process control , 2001 .

[27]  Tore Hägglund,et al.  An Automatic Tuning Procedure for Unsymmetrical Processes , 1995 .

[28]  Jonathan R. Partington,et al.  Bounded Power Signal Spaces for Robust Control and Modeling , 1999 .