Double variational principle for mean dimension with potential

This paper contributes to the mean dimension theory of dynamical systems. We introduce a new concept called mean dimension with potential and develop a variational principle for it. This is a mean dimension analogue of the theory of topological pressure. We consider a minimax problem for the sum of rate distortion dimension and the integral of a potential function. We prove that the minimax value is equal to the mean dimension with potential for a dynamical system having the marker property. The basic idea of the proof is a dynamicalization of geometric measure theory.

[1]  Yonatan Gutman,et al.  Metric Mean Dimension and Analog Compression , 2018, IEEE Transactions on Information Theory.

[2]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[3]  P. Walters Introduction to Ergodic Theory , 1977 .

[4]  Amir Dembo,et al.  The rate-distortion dimension of sets and measures , 1994, IEEE Trans. Inf. Theory.

[5]  T. Goodman,et al.  Relating Topological Entropy and Measure Entropy , 1971 .

[6]  L. Wayne Goodwyn,et al.  Topological entropy bounds measure-theoretic entropy , 1969 .

[7]  Shinichiroh Matsuo,et al.  Brody curves and mean dimension , 2011, 1110.6014.

[8]  P. Walters A VARIATIONAL PRINCIPLE FOR THE PRESSURE OF CONTINUOUS TRANSFORMATIONS. , 1975 .

[9]  Yonatan Gutman,et al.  Application of signal analysis to the embedding problem of $${\mathbb {Z}}^k$$Zk-actions , 2017, Geometric and Functional Analysis.

[10]  Yonatan Gutman,et al.  Embedding minimal dynamical systems into Hilbert cubes , 2015, Inventiones mathematicae.

[11]  A. Velozo,et al.  Rate distortion theory, metric mean dimension and measure theoretic entropy , 2017, 1707.05762.

[12]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[13]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[14]  Yonatan Gutman Embedding topological dynamical systems with periodic points in cubical shifts , 2015, Ergodic Theory and Dynamical Systems.

[15]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[16]  C. Villani Optimal Transport: Old and New , 2008 .

[17]  Aaron D. Wyner,et al.  Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .

[18]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .

[19]  Hanfeng Li,et al.  Mean dimension, mean rank, and von Neumann–Lück rank , 2013, Journal für die reine und angewandte Mathematik (Crelles Journal).

[20]  Elon Lindenstrauss,et al.  From Rate Distortion Theory to Metric Mean Dimension: Variational Principle , 2017, IEEE Transactions on Information Theory.

[21]  Misha Gromov,et al.  Topological Invariants of Dynamical Systems and Spaces of Holomorphic Maps: I , 1999 .

[22]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[23]  L. Pontrjagin,et al.  Sur Une Propriete Metrique de la Dimension , 1932 .

[24]  Tom Meyerovitch,et al.  Expansive multiparameter actions and mean dimension , 2017, Transactions of the American Mathematical Society.

[25]  Benjamin Weiss,et al.  Mean topological dimension , 2000 .

[26]  E. Lindenstrauss Mean dimension, small entropy factors and an embedding theorem , 1999 .

[27]  Michelle Effros,et al.  Variable-rate source coding theorems for stationary nonergodic sources , 1994, IEEE Trans. Inf. Theory.

[28]  Pertti Mattila,et al.  Geometry of sets and measures in Euclidean spaces , 1995 .

[29]  Yonatan Gutman Mean dimension and Jaworski‐type theorems , 2012, 1208.5248.

[30]  M. Tsukamoto Mean dimension of the dynamical system of Brody curves , 2014, 1410.1143.

[31]  David L. Neuhoff,et al.  New results on coding of stationary nonergodic sources , 1979, IEEE Trans. Inf. Theory.

[32]  E. Lindenstrauss,et al.  Mean dimension and an embedding problem: An example , 2014 .

[33]  J. Howroyd On Dimension and on the Existence of Sets of Finite Positive Hausdorff Measure , 1995 .

[34]  Elon Lindenstrauss,et al.  Double variational principle for mean dimension , 2019, Geometric and Functional Analysis.