暂无分享,去创建一个
[1] Yonatan Gutman,et al. Metric Mean Dimension and Analog Compression , 2018, IEEE Transactions on Information Theory.
[2] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[3] P. Walters. Introduction to Ergodic Theory , 1977 .
[4] Amir Dembo,et al. The rate-distortion dimension of sets and measures , 1994, IEEE Trans. Inf. Theory.
[5] T. Goodman,et al. Relating Topological Entropy and Measure Entropy , 1971 .
[6] L. Wayne Goodwyn,et al. Topological entropy bounds measure-theoretic entropy , 1969 .
[7] Shinichiroh Matsuo,et al. Brody curves and mean dimension , 2011, 1110.6014.
[8] P. Walters. A VARIATIONAL PRINCIPLE FOR THE PRESSURE OF CONTINUOUS TRANSFORMATIONS. , 1975 .
[9] Yonatan Gutman,et al. Application of signal analysis to the embedding problem of $${\mathbb {Z}}^k$$Zk-actions , 2017, Geometric and Functional Analysis.
[10] Yonatan Gutman,et al. Embedding minimal dynamical systems into Hilbert cubes , 2015, Inventiones mathematicae.
[11] A. Velozo,et al. Rate distortion theory, metric mean dimension and measure theoretic entropy , 2017, 1707.05762.
[12] R. Gray. Entropy and Information Theory , 1990, Springer New York.
[13] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[14] Yonatan Gutman. Embedding topological dynamical systems with periodic points in cubical shifts , 2015, Ergodic Theory and Dynamical Systems.
[15] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[16] C. Villani. Optimal Transport: Old and New , 2008 .
[17] Aaron D. Wyner,et al. Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .
[18] P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .
[19] Hanfeng Li,et al. Mean dimension, mean rank, and von Neumann–Lück rank , 2013, Journal für die reine und angewandte Mathematik (Crelles Journal).
[20] Elon Lindenstrauss,et al. From Rate Distortion Theory to Metric Mean Dimension: Variational Principle , 2017, IEEE Transactions on Information Theory.
[21] Misha Gromov,et al. Topological Invariants of Dynamical Systems and Spaces of Holomorphic Maps: I , 1999 .
[22] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[23] L. Pontrjagin,et al. Sur Une Propriete Metrique de la Dimension , 1932 .
[24] Tom Meyerovitch,et al. Expansive multiparameter actions and mean dimension , 2017, Transactions of the American Mathematical Society.
[25] Benjamin Weiss,et al. Mean topological dimension , 2000 .
[26] E. Lindenstrauss. Mean dimension, small entropy factors and an embedding theorem , 1999 .
[27] Michelle Effros,et al. Variable-rate source coding theorems for stationary nonergodic sources , 1994, IEEE Trans. Inf. Theory.
[28] Pertti Mattila,et al. Geometry of sets and measures in Euclidean spaces , 1995 .
[29] Yonatan Gutman. Mean dimension and Jaworski‐type theorems , 2012, 1208.5248.
[30] M. Tsukamoto. Mean dimension of the dynamical system of Brody curves , 2014, 1410.1143.
[31] David L. Neuhoff,et al. New results on coding of stationary nonergodic sources , 1979, IEEE Trans. Inf. Theory.
[32] E. Lindenstrauss,et al. Mean dimension and an embedding problem: An example , 2014 .
[33] J. Howroyd. On Dimension and on the Existence of Sets of Finite Positive Hausdorff Measure , 1995 .
[34] Elon Lindenstrauss,et al. Double variational principle for mean dimension , 2019, Geometric and Functional Analysis.