Injective hulls of certain discrete metric spaces and groups

Injective metric spaces, or absolute 1-Lipschitz retracts, share a number of properties with CAT(0) spaces. In the 1960es, J. R. Isbell showed that every metric space X has an injective hull E(X). Here it is proved that if X is the vertex set of a connected locally finite graph with a uniform stability property of intervals, then E(X) is a locally finite polyhedral complex with finitely many isometry types of n-cells, isometric to polytopes in l^n_\infty, for each n. This applies to a class of finitely generated groups G, including all word hyperbolic groups and abelian groups, among others. Then G acts properly on E(G) by cellular isometries, and the first barycentric subdivision of E(G) is a model for the classifying space \underbar{E}G for proper actions. If G is hyperbolic, E(G) is finite dimensional and the action is cocompact. In particular, every hyperbolic group acts properly and cocompactly on a space of non-positive curvature in a weak (but non-coarse) sense.

[1]  James W. Cannon,et al.  Almost convex groups , 1987 .

[2]  Bernd Sturmfels,et al.  Classification of Six-Point Metrics , 2004, Electron. J. Comb..

[3]  E. D. Pascale,et al.  Discovering the algebraic structure on the metric injective envelope of a real Banach space , 1997 .

[4]  Derek F. Holt Garside groups have the falsification by fellow-traveller property , 2010 .

[5]  Isoperimetric inequalities of Euclidean type in metric spaces , 2003, math/0306089.

[6]  U. Lang Extendability of Large-Scale Lipschitz Maps , 1999 .

[7]  Oded Schramm,et al.  Embeddings of Gromov Hyperbolic Spaces , 2000 .

[8]  Andreas W. M. Dress,et al.  Towards a Classification of Transitive Group Actions on Finite Metric Spaces , 1989 .

[9]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[10]  H. B. Cohen Injective envelopes of Banach spaces , 1964 .

[11]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[12]  Mohamed A. Khamsi,et al.  Introduction to hyperconvex spaces , 2001 .

[13]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[14]  H. M. Mulder The interval function of a graph , 1980 .

[15]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[16]  J. Cannon The combinatorial structure of cocompact discrete hyperbolic groups , 1984 .

[17]  A note on compact groups , 1983 .

[18]  Marek Chrobak,et al.  Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.

[19]  N. V. Rao The metric injective hulls of normed spaces , 1992 .

[20]  Murray Elder Regular geodesic languages and the falsification by fellow traveler property , 2005 .

[21]  Survey on Classifying Spaces for Families of Subgroups , 2003, math/0312378.

[22]  GEN. A. NOSKOV,et al.  Growth of Certain Non-positively Curved Cube Groups , 2000, Eur. J. Comb..

[23]  Oliver Goodman,et al.  On the tight span of an antipodal graph , 2000, Discret. Math..

[24]  Walter D. Neumann,et al.  Automatic structures, rational growth, and geometrically finite hyperbolic groups , 1995 .

[25]  J. L. Kelley,et al.  Banach spaces with the extension property , 1952 .

[26]  J. Isbell Injective envelopes of Banach spaces are rigidly attached , 1964 .

[27]  Christian Krattenthaler,et al.  On the Number of Fully Packed Loop Configurations with a Fixed Associated Matching , 2005, Electron. J. Comb..

[28]  Leopoldo Nachbin,et al.  A theorem of the Hahn-Banach type for linear transformations , 1950 .

[29]  Katharina T. Huber,et al.  An explicit computation of the injective hull of certain finite metric spaces in terms of their associated Buneman complex , 2002 .

[30]  A Model for the Universal Space for Proper Actions of a Hyperbolic Group , 2002, math/0209163.

[31]  J. Isbell Six theorems about injective metric spaces , 1964 .

[33]  Vincent Moulton,et al.  T-theory: An Overview , 1996, Eur. J. Comb..

[34]  Jirí Adámek,et al.  Abstract and Concrete Categories - The Joy of Cats , 1990 .

[35]  J. Baillon Nonexpansive mappings and hyperconvex spaces , 1988 .

[36]  Nellie Clarke Brown Trees , 1896, Savage Dreams.