A Combination of Shuffled Frog-Leaping Algorithm and Genetic Algorithm for Gene Selection

[1]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[2]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[3]  Byoung-Tak Zhang,et al.  Evolutionary learning of Web-document structure for information retrieval , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[4]  S. S. Iyengar,et al.  An Evaluation of Filter and Wrapper Methods for Feature Selection in Categorical Clustering , 2005, IDA.

[5]  T. Poggio,et al.  Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.

[6]  J. Welsh,et al.  Molecular classification of human carcinomas by use of gene expression signatures. , 2001, Cancer research.

[7]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[8]  Marina Vannucci,et al.  Gene selection: a Bayesian variable selection approach , 2003, Bioinform..

[9]  Jong-Hyeok Lee,et al.  Text categorization based on k-nearest neighbor approach for Web site classification , 2003, Inf. Process. Manag..

[10]  J. Mesirov,et al.  Chemosensitivity prediction by transcriptional profiling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Tao Li,et al.  A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression , 2004, Bioinform..

[12]  Wenqian Shang,et al.  A novel feature selection algorithm for text categorization , 2007, Expert Syst. Appl..

[13]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[14]  Werner Dubitzky,et al.  Instance-based concept learning from multiclass DNA microarray data , 2005, BMC Bioinformatics.

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Cheng-Fa Tsai,et al.  A Multiple-Searching Approach to Genetic Algorithms for Solving Traveling Salesman Problem , 2002, JCIS.

[17]  Mohammed Atiquzzaman,et al.  Optimal design of water distribution network using shu2ed complex evolution , 2004 .

[18]  Driss Aboutajdine,et al.  Feature selection using genetic algorithm for sonar images classification with support vector machines , 2005 .

[19]  Jason Weston,et al.  Support vector machines for multi-class pattern recognition , 1999, ESANN.

[20]  Sayan Mukherjee,et al.  Molecular classification of multiple tumor types , 2001, ISMB.

[21]  Patrick Tan,et al.  Genetic algorithms applied to multi-class prediction for the analysis of gene expression data , 2003, Bioinform..

[22]  Richard Nock,et al.  A hybrid filter/wrapper approach of feature selection using information theory , 2002, Pattern Recognit..

[23]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[24]  Byung Ro Moon,et al.  Hybrid Genetic Algorithms for Feature Selection , 2004, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Graziano Pesole,et al.  Regularized Least Squares Cancer Classifiers from DNA microarray data , 2005, BMC Bioinformatics.

[26]  R. Shamir,et al.  An algorithm for clustering cDNA fingerprints. , 2000, Genomics.

[27]  Thomas A. Darden,et al.  Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method , 2001, Bioinform..

[28]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[29]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[30]  Constantin F. Aliferis,et al.  A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis , 2004, Bioinform..

[31]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[32]  T. Golub,et al.  Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. , 2003, Cancer research.

[33]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[34]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[35]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[36]  Anil K. Jain,et al.  Dimensionality reduction using genetic algorithms , 2000, IEEE Trans. Evol. Comput..

[37]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[38]  Shinn-Ying Ho,et al.  Intelligent evolutionary algorithms for large parameter optimization problems , 2004, IEEE Trans. Evol. Comput..

[39]  Graham R. Wood,et al.  A multi-stage approach to clustering and imputation of gene expression profiles , 2007, Bioinform..

[40]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[41]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[42]  Concha Bielza,et al.  Machine Learning in Bioinformatics , 2008, Encyclopedia of Database Systems.

[43]  Anil K. Ghosh,et al.  On optimum choice of k , 2006, Comput. Stat. Data Anal..

[44]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Xiaoxing Liu,et al.  An Entropy-based gene selection method for cancer classification using microarray data , 2005, BMC Bioinformatics.

[46]  Koby Crammer,et al.  On the Learnability and Design of Output Codes for Multiclass Problems , 2002, Machine Learning.

[47]  Nirwan Ansari,et al.  A Genetic Algorithm for Multiprocessor Scheduling , 1994, IEEE Trans. Parallel Distributed Syst..

[48]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[49]  Antonio Fernandes Dias,et al.  Multiobjective genetic algorithms applied to solve optimization problems , 2002 .

[50]  Wayne Pullan,et al.  Adapting the genetic algorithm to the travelling salesman problem , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[51]  Hongbin Zhang,et al.  Feature selection using tabu search method , 2002, Pattern Recognit..

[52]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[53]  Shu-Kai S. Fan,et al.  A genetic algorithm and a particle swarm optimizer hybridized with Nelder-Mead simplex search , 2006, Comput. Ind. Eng..

[54]  Kevin E Lansey,et al.  Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm , 2003 .

[55]  Ulrich H.-G. Kreßel,et al.  Pairwise classification and support vector machines , 1999 .

[56]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[57]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  L. Davis Hybrid genetic algorithms for machine learning , 1990 .

[59]  Gary Geunbae Lee,et al.  Information gain and divergence-based feature selection for machine learning-based text categorization , 2006, Inf. Process. Manag..

[60]  Kenneth A. De Jong,et al.  Genetic algorithms as a tool for feature selection in machine learning , 1992, Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI '92.

[61]  Donald E. Grierson,et al.  A modified shuffled frog-leaping optimization algorithm: applications to project management , 2007 .

[62]  Xin Yao,et al.  Gene selection algorithms for microarray data based on least squares support vector machine , 2006, BMC Bioinformatics.