Investigating bioconjugation by atomic force microscopy

Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.

[1]  Mette D. E. Jepsen,et al.  Construction of a 4 zeptoliters switchable 3D DNA box origami. , 2012, ACS nano.

[2]  G. Chornokur,et al.  Spectroscopic behavior of bioconjugated quantum dots , 2008 .

[3]  H. Gaub,et al.  Ultrastable combined atomic force and total internal reflection fluorescence microscope [corrected]. , 2009, The Review of scientific instruments.

[4]  Malcolm L. H. Green,et al.  Chemical and biochemical sensing with modified single walled carbon nanotubes. , 2003, Chemistry.

[5]  T. Hosoya,et al.  Site-specific attachment of a protein to a carbon nanotube end without loss of protein function. , 2012, Bioconjugate chemistry.

[6]  J L West,et al.  Applications of nanotechnology to biotechnology commentary. , 2000, Current opinion in biotechnology.

[7]  S. S. Narayanan,et al.  Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. , 2008, Biosensors & bioelectronics.

[8]  G. Hummer,et al.  Theory, analysis, and interpretation of single-molecule force spectroscopy experiments , 2008, Proceedings of the National Academy of Sciences.

[9]  Toshio Ando,et al.  Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy , 2012, Nature Protocols.

[10]  S. Weiss,et al.  Combining atomic force and fluorescence microscopy for analysis of quantum‐dot labeled protein–DNA complexes , 2009, Journal of molecular recognition : JMR.

[11]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[12]  Nam-Kyung Yu,et al.  Detection of TrkB receptors distributed in cultured hippocampal neurons through bioconjugation between highly luminescent (quantum dot-neutravidin) and (biotinylated anti-TrkB antibody) on neurons by combined atomic force microscope and confocal laser scanning microscope. , 2010, Bioconjugate chemistry.

[13]  A. J. McQuillan,et al.  In situ IR spectroscopic studies of the avidin-biotin bioconjugation reaction on CdS particle films. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  Philip G. Collins,et al.  Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit , 2012, Science.

[15]  N. Grobert,et al.  Doping of carbon nanotubes with nitrogen improves protein coverage whilst retaining correct conformation , 2008, Nanotechnology.

[16]  N. Gadegaard,et al.  Atomic force microscopy in biology: technology and techniques , 2006, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[17]  Weihong Tan,et al.  An autonomous and controllable light-driven DNA walking device. , 2012, Angewandte Chemie.

[18]  U. Krull,et al.  Quantum dot and gold nanoparticle immobilization for biosensing applications using multidentate imidazole surface ligands. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[19]  N. Xi,et al.  Cellular-Level Surgery Using Nano Robots , 2012, Journal of laboratory automation.

[20]  N. Seeman Nucleic acid junctions and lattices. , 1982, Journal of theoretical biology.

[21]  G. Weiss,et al.  Conductance-Controlled Point Functionalization of Single-Walled Carbon Nanotubes , 2007, Science.

[22]  Meena Mahmood,et al.  Engineered nanostructural materials for application in cancer biology and medicine , 2012, Journal of applied toxicology : JAT.

[23]  H. Dai,et al.  Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery , 2009, Nano research.

[24]  I. Banerjee,et al.  Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition. , 2005, Journal of the American Chemical Society.

[25]  Chengde Mao,et al.  DNA-directed assembly of single-wall carbon nanotubes. , 2007, Journal of the American Chemical Society.

[26]  M. Loi,et al.  DNA block copolymer doing it all: from selection to self-assembly of semiconducting carbon nanotubes. , 2011, Angewandte Chemie.

[27]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[28]  Shimon Weiss,et al.  Stable, compact, bright biofunctional quantum dots with improved peptide coating. , 2012, The journal of physical chemistry. B.

[29]  Yufan He,et al.  Manipulating protein conformations by single-molecule AFM-FRET nanoscopy. , 2012, ACS nano.

[30]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[31]  J. Bechhoefer,et al.  Erratum: ‘‘Calibration of atomic‐force microscope tips’’ [Rev. Sci. Instrum. 64, 1868 (1993)] , 1993 .

[32]  Alexandra Mansur,et al.  Enzyme-Polymers Conjugated to Quantum-Dots for Sensing Applications , 2011, Sensors.

[33]  Mingdong Dong,et al.  DNA origami design of dolphin-shaped structures with flexible tails. , 2008, ACS nano.

[34]  H. Heering,et al.  Specific vectorial immobilization of oligonucleotide-modified yeast cytochrome C on carbon nanotubes. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  T. Chiles,et al.  Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing , 2005, Nature Methods.

[36]  Toshio Ando,et al.  High-speed atomic force microscopy coming of age , 2012, Nanotechnology.

[37]  H. Gaub,et al.  Functional assembly of aptamer binding sites by single-molecule cut-and-paste. , 2012, Nano letters.

[38]  C. Mirkin,et al.  In situ lipid dip-pen nanolithography under water. , 2010, Scanning.

[39]  Masayuki Endo,et al.  Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. , 2011, Organic & biomolecular chemistry.

[40]  Kai Yang,et al.  Nano-graphene in biomedicine: theranostic applications. , 2013, Chemical Society reviews.

[41]  A. Ting,et al.  Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins. , 2007, Journal of the American Chemical Society.

[42]  J. Toca-Herrera,et al.  The new future of scanning probe microscopy: Combining atomic force microscopy with other surface-sensitive techniques, optical microscopy and fluorescence techniques. , 2009, Nanoscale.

[43]  R. Reifenberger,et al.  Atomic force microscopy in liquid : biological applications , 2012 .

[44]  P. Annibale,et al.  Imaging and detection of single molecule recognition events on organic semiconductor surfaces. , 2009, Nano letters.

[45]  Zhuang Liu,et al.  Graphene based gene transfection. , 2011, Nanoscale.

[46]  Zhuang Liu,et al.  Drug delivery with carbon nanotubes for in vivo cancer treatment. , 2008, Cancer research.

[47]  R. Lennox,et al.  Preparation of water-soluble maleimide-functionalized 3 nm gold nanoparticles: a new bioconjugation template. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[48]  D. Erie,et al.  Atomic force microscopy studies of DNA-wrapped carbon nanotube structure and binding to quantum dots. , 2008, Journal of the American Chemical Society.

[49]  A. Chilkoti,et al.  Direct force measurements of the streptavidin-biotin interaction. , 1999, Biomolecular engineering.

[50]  Y. Lyubchenko,et al.  AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. , 2009, Methods.

[51]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[52]  R. Pires das Neves,et al.  Nanoparticles for intracellular-targeted drug delivery , 2011, Nanotechnology.

[53]  X. Qu,et al.  Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures , 2011, Nucleic acids research.

[54]  Z. Leonenko,et al.  AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential , 2011, Nanoscale research letters.

[55]  M. Prato,et al.  Functionalized carbon nanotubes for plasmid DNA gene delivery. , 2004, Angewandte Chemie.

[56]  Malcolm L. H. Green,et al.  Bioelectrochemical single-walled carbon nanotubes. , 2002, Journal of the American Chemical Society.

[57]  W. Lindner,et al.  Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity. , 2012, Analytica chimica acta.

[58]  B. Van Houten,et al.  Functional characterization and atomic force microscopy of a DNA repair protein conjugated to a quantum dot. , 2008, Nano letters.

[59]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Xuemei Li,et al.  Creation of cadmium sulfide nanostructures using AFM dip-pen nanolithography. , 2005, The journal of physical chemistry. B.

[61]  Keith Bonin,et al.  A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides , 2007, Microscopy research and technique.

[62]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[63]  C. Wyman,et al.  Sample preparation for SFM imaging of DNA, proteins, and DNA-protein complexes. , 2011, Methods in molecular biology.

[64]  Leo Gross,et al.  Bond-Order Discrimination by Atomic Force Microscopy , 2012, Science.

[65]  Jacob Piehler,et al.  Native protein nanolithography that can write, read and erase. , 2007, Nature nanotechnology.

[66]  A. Seifalian,et al.  A new era of cancer treatment: carbon nanotubes as drug delivery tools , 2011, International journal of nanomedicine.

[67]  Paul W. K. Rothemund,et al.  Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 , 2006 .

[68]  J. McFadden,et al.  AFM imaging of functionalized carbon nanotubes on biological membranes , 2009, Nanotechnology.

[69]  N. Hildebrandt Biofunctional quantum dots: controlled conjugation for multiplexed biosensors. , 2011, ACS nano.

[70]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[71]  R. Merkel,et al.  Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy , 1999, Nature.

[72]  Duane E. Prasuhn,et al.  The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. , 2011, Bioconjugate chemistry.

[73]  I. Tessmer,et al.  Correcting for AFM tip induced topography convolutions in protein-DNA samples. , 2012, Ultramicroscopy.

[74]  R. Kanaar,et al.  Molecular recognition of DNA-protein complexes: a straightforward method combining scanning force and fluorescence microscopy. , 2010, Ultramicroscopy.

[75]  Ralf Jungmann,et al.  Nanoscale imaging in DNA nanotechnology. , 2012, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[76]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[77]  Itamar Willner,et al.  Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. , 2003, Journal of the American Chemical Society.

[78]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[79]  C. Dekker,et al.  Effect of the BRCA2 CTRD domain on RAD51 filaments analyzed by an ensemble of single molecule techniques , 2011, Nucleic acids research.

[80]  H. Gaub,et al.  Single-Molecule Cut-and-Paste Surface Assembly , 2008, Science.

[81]  D. Lohr,et al.  Single-molecule recognition imaging microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[83]  M. Goh,et al.  DNA base pair resolution by single molecule force spectroscopy. , 2004, Nucleic acids research.

[84]  Hong,et al.  Multiple ink nanolithography: toward a multiple-Pen nano-plotter , 1999, Science.

[85]  H. Gaub,et al.  Erratum: ``Ultrastable combined atomic force and total internal fluorescence microscope'' [Rev. Sci Instrum. 80, 063704 (2009)] , 2009 .

[86]  K. Choi,et al.  A facile, one-step nanocarbon functionalization for biomedical applications. , 2012, Nano letters.

[87]  E. Evans Probing the relation between force--lifetime--and chemistry in single molecular bonds. , 2001, Annual review of biophysics and biomolecular structure.

[88]  Hui Xie,et al.  A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly , 2009, Nanotechnology.

[89]  Andreas Ebner,et al.  Linking of Sensor Molecules with Amino Groups to Amino-Functionalized AFM Tips , 2011, Bioconjugate chemistry.

[90]  Y. Lyubchenko Preparation of DNA and nucleoprotein samples for AFM imaging. , 2011, Micron.

[91]  Antti-Pekka Eskelinen,et al.  Controlling the formation of DNA origami structures with external signals. , 2012, Small.

[92]  S. Nie,et al.  Nanotechnology applications in cancer. , 2007, Annual review of biomedical engineering.

[93]  K. Leong,et al.  Multifunctional nanorods for gene delivery , 2003, Nature materials.

[94]  R. Hermans Atomic Force Microscopy in Liquid , 2012 .

[95]  M. Bruchez Quantum dots find their stride in single molecule tracking. , 2011, Current opinion in chemical biology.

[96]  R. Superfine,et al.  High accuracy FIONA-AFM hybrid imaging. , 2011, Ultramicroscopy.

[97]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[98]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[99]  C. Grigoropoulos,et al.  Bioelectronic silicon nanowire devices using functional membrane proteins , 2009, Proceedings of the National Academy of Sciences.

[100]  C. Wright,et al.  Application of AFM from microbial cell to biofilm. , 2010, Scanning.

[101]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[102]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[103]  H. Gaub,et al.  Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. , 2011, Ultramicroscopy.

[104]  M. Brechbiel,et al.  Growing applications of "click chemistry" for bioconjugation in contemporary biomedical research. , 2009, Cancer biotherapy & radiopharmaceuticals.

[105]  Nipun Misra,et al.  Carbon nanotube transistor controlled by a biological ion pump gate. , 2010, Nano letters.

[106]  Feng Zan,et al.  Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[107]  Cees Dekker,et al.  Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. , 2005, Nano letters.

[108]  F. Zan,et al.  Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy , 2012, Electrophoresis.

[109]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[110]  H. Gaub,et al.  Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste. , 2008, Nano letters.

[111]  D. Meldrum,et al.  Stability of DNA origami nanoarrays in cell lysate. , 2011, Nano letters.

[112]  Cees Dekker,et al.  Nanotechnology: Carbon nanotubes with DNA recognition , 2002, Nature.

[113]  Rong Wang,et al.  Protein delivery with nanoscale precision , 2005 .

[114]  O. B. Ozdoganlar,et al.  A Rotating-Tip-Based Mechanical Nano-Manufacturing Process: Nanomilling , 2010, Nanoscale Research Letters.