Chaotic transients in spatially extended systems

Different transient-chaos related phenomena of spatiotemporal systems are reviewed. Special attention is paid to cases where spatiotemporal chaos appears in the form of chaotic transients only. The asymptotic state is then spatially regular. In systems of completely different origins, ranging from fluid dynamics to chemistry and biology, the average lifetimes of these spatiotemporal transients are found, however, to grow rapidly with the system size, often in an exponential fashion. For sufficiently large spatial extension, the lifetime might turn out to be larger than any physically realizable time. There is increasing numerical and experimental evidence that in many systems such transients mask the real attractors. Attractors may then not be relevant to certain types of spatiotemporal chaos, or turbulence. The observable dynamics is governed typically by a high-dimensional chaotic saddle. We review the origin of exponential scaling of the transient lifetime with the system size, and compare this with a similar scaling with system parameters known in low-dimensional problems. The effect of weak noise on such supertransients is discussed. Different crisis phenomena of spatiotemporal systems are presented and fractal properties of the chaotic saddles underlying high-dimensional supertransients are discussed. The recent discovery according to which turbulence in pipe flows is a very long lasting transient sheds new light on chaotic transients in other spatially extended systems.

[1]  Bruno Eckhardt,et al.  Turbulence transition in pipe flow: some open questions , 2007 .

[2]  H. Chaté,et al.  Role of defects in the transition to turbulence via spatiotemporal intermittency , 1989 .

[3]  Leonid A. Bunimovich,et al.  Spacetime chaos in coupled map lattices , 1988 .

[4]  Antonio Politi,et al.  Desynchronization in diluted neural networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  W. Just,et al.  On Phase Transitions in Coupled Map Lattices , 2005 .

[6]  E. Schöll,et al.  Transient Spatio-Temporal Chaos in a Reaction-Diffusion Model , 1995 .

[7]  Celso Grebogi,et al.  Super persistent chaotic transients , 1985, Ergodic Theory and Dynamical Systems.

[8]  Metastable states, anomalous distributions and correlations in the HMF model , 2003, cond-mat/0303081.

[9]  K. Kaneko Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency , 1989 .

[10]  S. Ruffo,et al.  Periodic orbits and long transients in coupled map lattices , 1991 .

[11]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[12]  R. Richter,et al.  Critical exponents of directed percolation measured in spatiotemporal intermittency. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  B. Eckhardt,et al.  Statistical analysis of coherent structures in transitional pipe flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Fabian Waleffe,et al.  THREE-DIMENSIONAL COHERENT STATES IN PLANE SHEAR FLOWS , 1998 .

[15]  L. Limat,et al.  Defects and spatiotemporal disorder in a pattern of falling liquid columns. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[17]  Crutchfield,et al.  Are attractors relevant to turbulence? , 1988, Physical review letters.

[18]  J. Yorke,et al.  Edge of chaos in a parallel shear flow. , 2006, Physical review letters.

[19]  Shraiman Order, disorder, and phase turbulence. , 1986, Physical review letters.

[20]  On the nature of nonchaotic turbulence , 1992 .

[21]  F. Ginelli,et al.  Emergence of chaotic behaviour in linearly stable systems , 2001, nlin/0102005.

[22]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[23]  Winslow,et al.  Riddled parameter space in spatiotemporal chaotic dynamical systems. , 1994, Physical review letters.

[24]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond , 2001 .

[25]  Kunihiko Kaneko,et al.  Complex Systems: Chaos and Beyond: A Constructive Approach with Applications in Life Sciences , 2000 .

[26]  J. Westerweel,et al.  Finite lifetime of turbulence in shear flows , 2006, Nature.

[27]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[28]  B. Eckhardt,et al.  Laminar-turbulent boundary in plane Couette flow. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  P. Reimann Noisy one-dimensional maps near a crisis. II. General uncorrelated weak noise , 1996 .

[30]  Antonio Politi,et al.  Unpredictable behaviour in stable systems , 1993 .

[31]  Eckehard Schöll,et al.  Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations , 1997 .

[32]  Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model , 2003, cond-mat/0312480.

[33]  U. Feudel Strange nonchaotic attractors , 2006 .

[34]  K. Kaneko Spatiotemporal Intermittency in Coupled Map Lattices , 1985 .

[35]  Winslow,et al.  Fractal basin boundaries in coupled map lattices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  F. Willeboordse Supertransients and suppressed chaos in the diffusively coupled logistic lattice. , 1994, Chaos.

[37]  T Mullin,et al.  Decay of turbulence in pipe flow. , 2006, Physical review letters.

[38]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[39]  Ott,et al.  Fractal dimensions of chaotic saddles of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Stéphane Zaleski,et al.  Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces , 1986 .

[41]  B. Eckhardt,et al.  Traveling waves in pipe flow. , 2003, Physical review letters.

[42]  Nancy S Makay A universal concept. , 2006, Rehab management.

[43]  K. He,et al.  Critical dynamic events at the crisis of transition to spatiotemporal chaos. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Eckehard Schöll,et al.  Analysis of complex and chaotic patterns near a codimension-2 Turing-Hopf point in a reaction-diffusion model , 1997 .

[45]  Grebogi,et al.  Experimental confirmation of the scaling theory for noise-induced crises. , 1991, Physical review letters.

[46]  Y. Lai,et al.  Extreme sensitive dependence on parameters and initial conditions in spatio-temporal chaotic dynamical systems , 1994 .

[47]  Y. Lai,et al.  Scaling laws for noise-induced super-persistent chaotic transients. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Feudel,et al.  Supertransient chaos in the two-dimensional complex Ginzburg-Landau equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  A. Politi,et al.  Chaotic-like behaviour in chains of stable nonlinear oscillators , 1997 .

[50]  J. Keeler,et al.  Robust space-time intermittency and 1/ f noise , 1986 .

[51]  K. Showalter,et al.  Transient chaos in a closed chemical system , 1991 .

[52]  Z Toroczkai,et al.  Selective sensitivity of open chaotic flows on inertial tracer advection: catching particles with a stick. , 2002, Physical review letters.

[53]  Antonio Politi,et al.  Error propagation in extended chaotic systems , 1995, chao-dyn/9504016.

[54]  Franaszek Influence of noise on the mean lifetime of chaotic transients. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[55]  Sergey P. Kuznetsov,et al.  Strange Nonchaotic Attractors: Dynamics Between Order And Chaos in Quasiperiodically Forced Systems , 2006 .

[56]  Ying-Cheng Lai,et al.  Extraordinarily superpersistent chaotic transients , 2004 .

[57]  P. K. Mohanty,et al.  Energy diffusion in hard-point systems , 2007, cond-mat/0702212.

[58]  Hugues Chaté,et al.  Spatio-temporal intermittency in coupled map lattices , 1988 .

[59]  Jensen,et al.  Transition to turbulence in a discrete Ginzburg-Landau model. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[60]  Critical Exponent for Gap Filling at Crisis. , 1996, Physical review letters.

[61]  Tél,et al.  Thermodynamics of attractor enlargement. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[62]  F A Bignone Cells-gene interactions simulation on a coupled map lattice. , 1993, Journal of theoretical biology.

[63]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[64]  E. Macau,et al.  High-dimensional interior crisis in the Kuramoto-Sivashinsky equation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  Bose,et al.  Karhunen-Loeve local characterization of spatiotemporal chaos in a reaction-diffusion system , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[67]  Angelo Vulpiani,et al.  Dynamical Systems Approach to Turbulence , 1998 .

[68]  S. Grossmann The onset of shear flow turbulence , 2000 .

[69]  Zhang,et al.  Average lifetime and geometric properties for superlong chaotic transients in a hybrid optical bistable system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  A. Chian,et al.  Chaotic saddles at the onset of intermittent spatiotemporal chaos. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  K. Kaneko,et al.  Collective oscillation in a hamiltonian system. , 2006, Physical review letters.

[72]  G. Ahlers,et al.  Turbulence near Onset of Convection , 1980 .

[73]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[74]  Winslow,et al.  Geometric properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems. , 1995, Physical review letters.

[75]  Huber,et al.  Nucleation and transients at the onset of vortex turbulence. , 1992, Physical review letters.

[76]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[77]  James A. Yorke,et al.  A procedure for finding numerical trajectories on chaotic saddles , 1989 .

[78]  S. Ruffo,et al.  Clustering and relaxation in Hamiltonian long-range dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[79]  Jerry Westerweel,et al.  Turbulence transition in pipe flow , 2007 .

[80]  Holger Kantz,et al.  Repellers, semi-attractors, and long-lived chaotic transients , 1985 .

[81]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[82]  B. Eckhardt,et al.  Dynamical systems and the transition to turbulence in linearly stable shear flows , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[83]  T. Tél,et al.  Chaotic Dynamics: An Introduction Based on Classical Mechanics , 2006 .

[84]  H. Fujisaka,et al.  Glassy dynamics in a spatially distributed dynamical system , 1993 .

[85]  P. McClintock Synchronization:a universal concept in nonlinear science , 2003 .

[86]  Ying-Cheng Lai,et al.  Superpersistent chaotic transients in physical space: advective dynamics of inertial particles in open chaotic flows under noise. , 2003, Physical review letters.

[87]  金子 邦彦 Theory and applications of coupled map lattices , 1993 .

[88]  H. Kantz,et al.  Hypothesis of strong chaos and anomalous diffusion in coupled symplectic maps , 2006, nlin/0609046.

[89]  Ying-Cheng Lai,et al.  Persistence of supertransients of spatiotemporal chaotic dynamical systems in noisy environment , 1995 .

[90]  B. Eckhardt,et al.  Fractal Stability Border in Plane Couette Flow , 1997, chao-dyn/9704018.

[91]  Kenneth Showalter,et al.  Collapse of spatiotemporal chaos. , 2003, Physical review letters.

[92]  J. Yorke,et al.  Turbulence transition and the edge of chaos in pipe flow. , 2007, Physical review letters.

[93]  Antonio Politi Alessandro Torcini Linear and Non-Linear Mechanisms of Information Propagation , 1994, chao-dyn/9411006.

[94]  J. Gollub,et al.  Order and disorder in fluid motion. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Grebogi,et al.  Riddling Bifurcation in Chaotic Dynamical Systems. , 1996, Physical review letters.

[96]  Renate Wackerbauer,et al.  Nonlocal coupling can prevent the collapse of spatiotemporal chaos. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  B. Eckhardt,et al.  Sensitive dependence on initial conditions in transition to turbulence in pipe flow , 2003, Journal of Fluid Mechanics.

[98]  H. Jürgensen Synchronization , 2021, Inf. Comput..

[99]  A. Chian,et al.  Origin of transient and intermittent dynamics in spatiotemporal chaotic systems. , 2007, Physical review letters.

[100]  E. Macau,et al.  Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation. , 2004, Chaos.

[101]  A. Politi,et al.  Phase transitions in 2D linearly stable coupled map lattices , 1997 .

[102]  A. Compagner On Metastable States , 1969 .

[103]  J. Yorke,et al.  Fractal basin boundaries , 1985 .

[104]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[105]  Paul Manneville,et al.  Instabilities, Chaos and Turbulence , 2010 .

[106]  Kapral,et al.  Dynamics of complex interfaces. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[107]  Kunihiko Kaneko,et al.  Supertransients, spatiotemporal intermittency and stability of fully developed spatiotemporal chaos , 1990 .

[108]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[109]  J. Gibson,et al.  Visualizing the geometry of state space in plane Couette flow , 2007, Journal of Fluid Mechanics.

[110]  U. Brosa Turbulence without strange attractor , 1989 .

[111]  Henry S. Greenside,et al.  Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium , 1997, chao-dyn/9710006.

[112]  A. Chian,et al.  High-dimensional chaotic saddles in the Kuramoto-Sivashinsky equation , 2003 .

[113]  Ying-Cheng Lai,et al.  Noise scaling of phase synchronization of chaos , 2000 .

[114]  I. Mutabazi,et al.  Transition to turbulence in a tall annulus submitted to a radial temperature gradient , 2007 .

[115]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[116]  Qu,et al.  Spatiotemporally periodic states, periodic windows, and intermittency in coupled-map lattices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[117]  Ying-Cheng Lai,et al.  How often are chaotic transients in spatially extended ecological systems , 2001 .

[118]  Transient chaos as the backbone of dynamics on strange attractors beyond crisis , 2002 .

[119]  J. Westerweel,et al.  Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow , 2004, Science.

[120]  FUZZY TRANSITION REGION IN A ONE-DIMENSIONAL COUPLED-STABLE-MAP LATTICE , 1998 .

[121]  M. Timme,et al.  Long chaotic transients in complex networks. , 2004, Physical review letters.

[122]  A. Chian,et al.  Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[123]  A. Politi,et al.  From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems , 2005, cond-mat/0507438.