Experimental Evaluation of Impulsive Ultrasonic Intra-Body Communications for Implantable Biomedical Devices

Biomedical systems of miniaturized implantable sensors and actuators interconnected in an intra-body area network could enable revolutionary clinical applications. Given the well-understood limitations of radio frequency (RF) propagation in the human body, in our previous work we investigated the use of ultrasonic waves as an alternative physical carrier of information, and proposed Ultrasonic WideBand (UsWB), an ultrasonic multipath-resilient integrated physical and medium access control (MAC) layer protocol. In this paper, we discuss the design and implementation of a software-defined testbed architecture for ultrasonic intra-body area networks, and propose the first experimental demonstration of the feasibility of ultrasonic communications in tissue mimicking materials. We first discuss in detail our FPGA-based prototype implementation of UsWB. We then demonstrate how the prototype can flexibly trade performance off for power consumption, and achieve, for bit error rates (BER) no higher than <inline-formula> <tex-math notation="LaTeX">$10^{-6}$</tex-math><alternatives><inline-graphic xlink:href="santagati-ieq1-2561277.gif"/> </alternatives></inline-formula>, either (i) high-data rate transmissions up to <inline-formula> <tex-math notation="LaTeX">$700\mathrm{kbit/s}$</tex-math><alternatives> <inline-graphic xlink:href="santagati-ieq2-2561277.gif"/></alternatives></inline-formula> at a transmit power of <inline-formula><tex-math notation="LaTeX">$-14\mathrm{dBm}$</tex-math><alternatives> <inline-graphic xlink:href="santagati-ieq3-2561277.gif"/></alternatives></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$\approx 40\mathrm{\mu W}$</tex-math><alternatives> <inline-graphic xlink:href="santagati-ieq4-2561277.gif"/></alternatives></inline-formula>), or (ii) low-data rate and lower-power transmissions down to <inline-formula><tex-math notation="LaTeX">$-21\mathrm{dBm}$</tex-math><alternatives> <inline-graphic xlink:href="santagati-ieq5-2561277.gif"/></alternatives></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$\approx 8\mathrm{\mu W}$</tex-math><alternatives> <inline-graphic xlink:href="santagati-ieq6-2561277.gif"/></alternatives></inline-formula>) at <inline-formula> <tex-math notation="LaTeX">$70\mathrm{kbit/s}$</tex-math><alternatives> <inline-graphic xlink:href="santagati-ieq7-2561277.gif"/></alternatives></inline-formula>. We demonstrate that the UsWB MAC protocol allows multiple transmitter-receiver pairs to coexist and dynamically adapt the transmission rate according to channel and interference conditions to maximize throughput while satisfying predefined reliability constraints. We also show how UsWB can be used to enable a video monitoring medical application for implantable devices. Finally, we propose (and validate through experiments) a statistical model of small-scale fading for the ultrasonic intra-body channel.

[1]  Martin O Culjat,et al.  A review of tissue substitutes for ultrasound imaging. , 2010, Ultrasound in medicine & biology.

[2]  Mohammed Ghanbari,et al.  Scope of validity of PSNR in image/video quality assessment , 2008 .

[3]  Viving Frendiana PENGUKURAN RESPON IMPULS KANAL RADIO MIMO 2 X 2 PADA FREKUENSI 2,4 GHz MENGGUNAKAN WARP (WIRELESS OPEN ACCESS RESEARCH PLATFORM) , 2014 .

[4]  Judith E. Terrill,et al.  A statistical path loss model for medical implant communication channels , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[5]  F. S. Foster,et al.  Beyond 30 MHz [applications of high-frequency ultrasound imaging] , 1996 .

[6]  Sverre Holm,et al.  Applications of airborne ultrasound in human-computer interaction. , 2014, Ultrasonics.

[7]  Laura Galluccio,et al.  Ultrasonic networking for E-health applications , 2013, IEEE Wireless Communications.

[8]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[9]  Marc A. Rozner Implantable cardioverter/defibrillators (ICDs). , 1994, The Medical letter on drugs and therapeutics.

[10]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[11]  Emrecan Demirors,et al.  Advances in Underwater Acoustic Networking , 2013, Mobile Ad Hoc Networking.

[12]  Matt Clark,et al.  Design and fabrication of nanoscale ultrasonic transducers , 2012 .

[13]  Tad Hogg,et al.  Acoustic communication for medical nanorobots , 2012, Nano Commun. Networks.

[14]  Srinivasan Seshan,et al.  Enabling MAC Protocol Implementations on Software-Defined Radios , 2009, NSDI.

[15]  Kamran Eshraghian,et al.  The UTCOMS: a wireless video capsule nanoendoscope , 2006, SPIE BiOS.

[16]  Michela Peisino,et al.  Deeply implanted medical device based on a novel ultrasonic telemetry technology , 2013 .

[17]  Ilangko Balasingham,et al.  Ultrawideband Technology in Medicine: A Survey , 2012, J. Electr. Comput. Eng..

[18]  Bernhard E. Boser,et al.  12.1 3D ultrasonic gesture recognition , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[19]  R. Phillips Guidance for Industry and FDA Staff Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers , 2008 .

[20]  Haitao Wu,et al.  Sora: High Performance Software Radio Using General Purpose Multi-core Processors , 2009, NSDI.

[21]  Ian Oppermann,et al.  UWB Communication Systems—A Comprehensive Overview , 2006 .

[22]  P. Wells Biomedical Ultrasonics , 1977 .

[23]  G. Vermeeren,et al.  Path loss model for in-body communication in homogeneous human muscle tissue , 2009 .

[24]  Sandeep K. S. Gupta,et al.  Body Area Networks: Safety, Security, and Sustainability , 2013 .

[25]  Roger Wattenhofer,et al.  SpiderBat: Augmenting wireless sensor networks with distance and angle information , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[26]  Gunar Schirner,et al.  Multi-Path Model and Sensitivity Analysis for Galvanic Coupled Intra-Body Communication Through Layered Tissue , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[27]  F.L. Thurstone,et al.  Biomedical Ultrasonics , 1970, IEEE Transactions on Industrial Electronics and Control Instrumentation.

[28]  Laura Galluccio,et al.  Challenges and implications of using ultrasonic communications in intra-body area networks , 2012, 2012 9th Annual Conference on Wireless On-Demand Network Systems and Services (WONS).

[29]  P. Shankar Ultrasonic tissue characterization using a generalized Nakagami model , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[30]  Anthony Rowe,et al.  Indoor pseudo-ranging of mobile devices using ultrasonic chirps , 2012, SenSys '12.

[31]  Tommaso Melodia,et al.  Sonar inside your body: Prototyping ultrasonic intra-body sensor networks , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[32]  K. Kirk Shung,et al.  Ultrasonic transducers and arrays , 1996 .

[33]  F. P. Bolin,et al.  Refractive index of some mammalian tissues using a fiber optic cladding method. , 1989, Applied optics.

[34]  Torbjørn Eltoft,et al.  Modeling the amplitude statistics of ultrasonic images , 2006, IEEE Transactions on Medical Imaging.

[35]  Antonis Kalis,et al.  On the Use of Ultrasonic Waves as a Communications Medium in Biosensor Networks , 2010, IEEE Transactions on Information Technology in Biomedicine.

[36]  A. Cheung,et al.  Deep local hyperthermia for cancer therapy: external electromagnetic and ultrasound techniques. , 1984, Cancer research.

[37]  Kai Zhang,et al.  Modeling and Characterization of the Implant Intra-Body Communication Based on Capacitive Coupling Using a Transfer Function Method , 2014, Sensors.

[38]  Laura Galluccio,et al.  Medium Access Control and Rate Adaptation for Ultrasonic Intrabody Sensor Networks , 2015, IEEE/ACM Transactions on Networking.

[39]  Tommaso Melodia,et al.  Platforms and testbeds for experimental evaluation of cognitive ad hoc networks , 2010, IEEE Communications Magazine.

[40]  P. Mohana Shankar,et al.  A general statistical model for ultrasonic backscattering from tissues , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.