Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

[1]  Yiming Zhu,et al.  Correction: Composition-dependent Raman modes of Mo1-xWxS2 monolayer alloys. , 2016, Nanoscale.

[2]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[3]  Su-Huai Wei,et al.  Novel and Enhanced Optoelectronic Performances of Multilayer MoS2–WS2 Heterostructure Transistors , 2014 .

[4]  P. Galindo,et al.  Analysis of electron beam damage of exfoliated MoS₂ sheets and quantitative HAADF-STEM imaging. , 2014, Ultramicroscopy.

[5]  M. Terrones,et al.  Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. , 2014, ACS nano.

[6]  Ana Laura Elías,et al.  Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers , 2014 .

[7]  Yeonwoong Jung,et al.  Chemically synthesized heterostructures of two-dimensional molybdenum/tungsten-based dichalcogenides with vertically aligned layers. , 2014, ACS nano.

[8]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[9]  Yiming Zhu,et al.  Growth of Large‐Area 2D MoS2(1‐x)Se2x Semiconductor Alloys , 2014, Advanced materials.

[10]  Min Kyu Kim,et al.  Atomic layer deposition of Y2O3 and yttrium-doped HfO2 using a newly synthesized Y(iPrCp)2(N-iPr-amd) precursor for a high permittivity gate dielectric , 2014 .

[11]  Min Kyu Kim,et al.  Significant Enhancement of the Dielectric Constant through the Doping of CeO2 into HfO2 by Atomic Layer Deposition , 2014 .

[12]  Yi Liu,et al.  Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. , 2014, Nano letters.

[13]  Hyun Jae Kim,et al.  Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition , 2014 .

[14]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[15]  D. Smirnov,et al.  New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.

[16]  Il-Kwon Oh,et al.  Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. , 2014, Nanoscale.

[17]  Yiming Zhu,et al.  Composition-dependent Raman modes of Mo(1-x)W(x)S2 monolayer alloys. , 2014, Nanoscale.

[18]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[19]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[20]  Li‐Min Liu,et al.  Modulating the atomic and electronic structures through alloying and heterostructure of single-layer MoS2 , 2014 .

[21]  Zhigang Shuai,et al.  Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction. , 2014, The journal of physical chemistry letters.

[22]  D. Chi,et al.  Vapor-phase growth and characterization of Mo(1-x)W(x)S2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. , 2014, Nanoscale.

[23]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[24]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[25]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[26]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[27]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[28]  Ruitao Lv,et al.  Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. , 2013, ACS nano.

[29]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[30]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[31]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[32]  Zhiyong Fan,et al.  Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications. , 2013, ACS nano.

[33]  Ying-Sheng Huang,et al.  Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers , 2013, Nature Communications.

[34]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[35]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[36]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[37]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[38]  K. Tsukagoshi,et al.  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[39]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[40]  Dominique Baillargeat,et al.  From Bulk to Monolayer MoS2: Evolution of Raman Scattering , 2012 .

[41]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[42]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[43]  Hyungjun Kim,et al.  Characteristics and applications of plasma enhanced-atomic layer deposition , 2011 .

[44]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[45]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[46]  Han-Bo-Ram Lee,et al.  Applications of atomic layer deposition to nanofabrication and emerging nanodevices , 2009 .

[47]  M. Cassir,et al.  ZrO2–In2O3 thin layers with gradual ionic to electronic composition synthesized by atomic layer deposition for SOFC applications , 2009 .

[48]  Xingao Gong,et al.  Origin of the Unusually Large Band-Gap Bowing and the Breakdown of the Band-Edge Distribution Rule in the SnxGe1-x Alloys , 2008 .

[49]  T. K. Bergstresser,et al.  Electronic Structures of Semiconductor Alloys , 1970 .

[50]  H. L. Johnston,et al.  The Vaporization of Molybdenum and Tungsten Oxides , 1958 .

[51]  J. Grossman,et al.  Supporting Information for : Extraordinary Sunlight Absorption and 1 nm-Thick Photovoltaics using Two-Dimensional Monolayer Materials , 2013 .

[52]  Wolfgang Tremel,et al.  Synthesis and Tribological Performance of Novel MoxW1−xS2 (0 ≤ x ≤ 1) Inorganic Fullerenes , 2009 .