Scenario development during commissioning operations on the National Spherical Torus Experiment Upgrade

The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal fields (1 T) and plasma currents (1.0–2.0 MA) in a low aspect ratio geometry (A  =  1.6–1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes the progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0  =  0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse  >  1.8 s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2  >  1) and stability (βN/βN-nowall  >  1) compared to NSTX discharges for Ip  ⩽  1 MA. High-performance H-mode scenarios require an L–H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ  >  2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.

[1]  J. Ferron,et al.  Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U , 2018 .

[2]  B. Koel,et al.  Initial studies of plasma facing component surface conditioning in the national spherical tokamak experiment upgrade with the materials analysis particle probe , 2017 .

[3]  R. Bell,et al.  Suppression of Alfvén Modes on the National Spherical Torus Experiment Upgrade with Outboard Beam Injection. , 2017, Physical review letters.

[4]  C. S. Chang,et al.  Overview of NSTX Upgrade initial results and modelling highlights , 2017 .

[5]  R. Andre,et al.  Feedback control design for non-inductively sustained scenarios in NSTX-U using TRANSP , 2017 .

[6]  R. E. Bell,et al.  A reduced resistive wall mode kinetic stability model for disruption forecasting , 2017 .

[7]  T. Petrie,et al.  Snowflake Divertor Experiments in the DIII-D, NSTX, and NSTX-U Tokamaks Aimed at the Development of the Divertor Power Exhaust Solution , 2016, IEEE Transactions on Plasma Science.

[8]  R G L Vann,et al.  Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited). , 2016, The Review of scientific instruments.

[9]  V. Soukhanovskii,et al.  Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring. , 2016, The Review of scientific instruments.

[10]  K. Tritz,et al.  Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade. , 2016, The Review of scientific instruments.

[11]  Jean Paul Allain,et al.  Advances in boronization on NSTX-Upgrade , 2016 .

[12]  R. Bell,et al.  Initial error field correction studies in the National Spherical Torus Experiment Upgrade , 2016 .

[13]  Laila A. El-Guebaly,et al.  Fusion nuclear science facilities and pilot plants based on the spherical tokamak , 2016 .

[14]  M. Shephard,et al.  Multi-region approach to free-boundary three-dimensional tokamak equilibria and resistive wall instabilities , 2016 .

[15]  C. Rowley,et al.  Modeling and control of plasma rotation for NSTX using neoclassical toroidal viscosity and neutral beam injection , 2016 .

[16]  V. Soukhanovskii,et al.  A dual wavelength imaging system for plasma-surface interaction studies on the National Spherical Torus Experiment Upgrade. , 2015, The Review of scientific instruments.

[17]  R. Bell,et al.  Midplane neutral density profiles in the National Spherical Torus Experiment , 2015 .

[18]  R. Bell,et al.  Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges , 2015 .

[19]  J. Lawson,et al.  Progress toward commissioning and plasma operation in NSTX-U , 2015 .

[20]  Mark D. Boyer,et al.  Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations , 2015 .

[21]  S. Gerhardt,et al.  Magnetic diagnostics for equilibrium reconstruction and realtime plasma control in NSTX-Upgrade. , 2014, The Review of scientific instruments.

[22]  R. Mozulay,et al.  NSTX-U Control System Upgrades , 2014 .

[23]  Keith G. Erickson,et al.  NSTX-U Digital Coil Protection System Software Detailed Design , 2014, IEEE Transactions on Plasma Science.

[24]  L. L. Lao,et al.  Overview of physics results from the conclusive operation of the National Spherical Torus Experiment , 2013 .

[25]  S. A. Sabbagh,et al.  Detection of disruptions in the high-β spherical torus NSTX , 2013 .

[26]  A. Diallo,et al.  Prospects for the Thomson scattering system on NSTX-Upgrade. , 2012, The Review of scientific instruments.

[27]  S. P. Gerhardt,et al.  Exploration of the equilibrium operating space for NSTX-Upgrade , 2012 .

[28]  V. Soukhanovskii,et al.  Full toroidal imaging of non-axisymmetric plasma material interaction in the National Spherical Torus Experiment divertor. , 2012, The Review of scientific instruments.

[29]  R. Bell,et al.  A real-time velocity diagnostic for NSTX. , 2012, The Review of scientific instruments.

[30]  Laila A. El-Guebaly,et al.  Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator , 2011 .

[31]  J. Manickam,et al.  Pedestal characterization and stability of small-ELM regimes in NSTX , 2011 .

[32]  C. Neumeyer,et al.  Overview of the physics and engineering design of NSTX upgrade , 2011, 2011 IEEE/NPSS 24th Symposium on Fusion Engineering.

[33]  D. Clayton,et al.  Compact "diode-based" multi-energy soft x-ray diagnostic for NSTX. , 2010, The Review of scientific instruments.

[34]  Russell Feder,et al.  Measurement of poloidal velocity on the National Spherical Torus Experiment (invited). , 2010, The Review of scientific instruments.

[35]  R. Bell,et al.  Spectroscopic diagnostics for liquid lithium divertor studies on National Spherical Torus Experiment. , 2010, The Review of scientific instruments.

[36]  K. Tritz,et al.  Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements. , 2010, The Review of scientific instruments.

[37]  R. E. Bell,et al.  Observation and correction of non-resonant error fields in NSTX , 2010 .

[38]  R. Andre,et al.  Comparison of poloidal velocity measurements to neoclassical theory on the National Spherical Torus Experimenta) , 2010 .

[39]  J. Manickam,et al.  Advances in global MHD mode stabilization research on NSTX , 2010 .

[40]  Jong-Kyu Park,et al.  Progress in understanding error-field physics in NSTX spherical torus plasmas , 2007 .

[41]  A. Boozer,et al.  Computation of three-dimensional tokamak and spherical torus equilibria , 2007 .

[42]  V. Soukhanovskii,et al.  Electron density measurements in the National Spherical Torus Experiment detached divertor region using Stark broadening of deuterium infrared Paschen emission lines , 2006 .

[43]  C. Neumeyer,et al.  Status of the Control System on the National Spherical Torus Experiment (NSTX) , 2006 .

[44]  L. L. Lao,et al.  Resistive wall stabilized operation in rotating high beta NSTX plasmas , 2006 .

[45]  R. Bell,et al.  Energy confinement scaling in the low aspect ratio National Spherical Torus Experiment (NSTX) , 2005 .

[46]  E. D. Fredrickson,et al.  H-mode pedestal, ELM and power threshold studies in NSTX , 2005 .

[47]  B. G. Penaflor,et al.  Plasma shape control on the National Spherical Torus Experiment (NSTX) using real-time equilibrium reconstruction , 2005 .

[48]  E. D. Fredrickson,et al.  Progress towards steady state on NSTX , 2005 .

[49]  L. L. Lao,et al.  The resistive wall mode and feedback control physics design in NSTX , 2004 .

[50]  R. Bell,et al.  Edge rotation and temperature diagnostic on the National Spherical Torus Experiment , 2004 .

[51]  E. D. Fredrickson,et al.  β-Limiting MHD instabilities in improved-performance NSTX spherical torus plasmas , 2003 .

[52]  J. Scoville,et al.  MULTI-MODE ERROR FIELD CORRECTION ON THE DIII-D TOKAMAK , 2002 .

[53]  V. Soukhanovskii,et al.  Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas , 2002 .

[54]  L. L. Lao,et al.  Equilibrium properties of spherical torus plasmas in NSTX , 2001 .

[55]  S. Jardin,et al.  Ohmic Flux Consumption During Initial Operation of the NSTX Spherical Torus , 2000 .

[56]  M. Viola,et al.  Exploration of spherical torus physics in the NSTX device , 2000 .

[57]  R. L. Haye,et al.  Error field mode studies on JET, COMPASS-D and DIII-D, and implications for ITER , 1999 .

[58]  L. L. Lao,et al.  Real time equilibrium reconstruction for tokamak discharge control , 1998 .

[59]  E. A. Lazarus,et al.  Low voltage Ohmic and electron cyclotron heating assisted startup in DIII-D , 1991 .

[60]  J. B. Lister,et al.  Control of the vertical instability in tokamaks , 1990 .