GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

GROMACS is one of the most widely used open-source and free software codes in chemistry, used primarily for dynamical simulations of biomolecules. It provides a rich set of calculation types, prepa ...

[1]  Austin J. Barnes,et al.  Molecular liquids : dynamics and interactions , 1984 .

[2]  Kurt Kremer,et al.  Structure Formation of Toluene around C60: Implementation of the Adaptive Resolution Scheme (AdResS) into GROMACS. , 2012, Journal of chemical theory and computation.

[3]  Carl Caleman,et al.  Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant , 2011, Journal of chemical theory and computation.

[4]  Benoît Roux Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. , 2011 .

[5]  Helmut Grubmüller,et al.  Keep It Flexible: Driving Macromolecular Rotary Motions in Atomistic Simulations with GROMACS , 2011, Journal of chemical theory and computation.

[6]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[7]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[8]  Albert C. Pan,et al.  Building Markov state models along pathways to determine free energies and rates of transitions. , 2008, The Journal of chemical physics.

[9]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[10]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[11]  E. van der Giessen,et al.  Effect of bending and torsion rigidity on self-diffusion in polymer melts: a molecular-dynamics study. , 2005, The Journal of chemical physics.

[12]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[13]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[14]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[15]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[16]  Björn Wallner,et al.  Tracking a complete voltage-sensor cycle with metal-ion bridges , 2012, Proceedings of the National Academy of Sciences.

[17]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[18]  Grant M. Rotskoff,et al.  Molecular simulation workflows as parallel algorithms: the execution engine of Copernicus, a distributed high-performance computing platform. , 2015, Journal of chemical theory and computation.

[19]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[20]  Erik Lindahl,et al.  An efficient and extensible format, library, and API for binary trajectory data from molecular simulations , 2014, J. Comput. Chem..

[21]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[22]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[23]  Berk Hess,et al.  Lennard-Jones Lattice Summation in Bilayer Simulations Has Critical Effects on Surface Tension and Lipid Properties. , 2013, Journal of chemical theory and computation.

[24]  Erik Lindahl,et al.  Stabilization of the GluCl ligand-gated ion channel in the presence and absence of ivermectin. , 2013, Biophysical journal.

[25]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[26]  Berk Hess,et al.  A flexible algorithm for calculating pair interactions on SIMD architectures , 2013, Comput. Phys. Commun..

[27]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[28]  VINCENT ZOETE,et al.  SwissParam: A fast force field generation tool for small organic molecules , 2011, J. Comput. Chem..

[29]  Pramod C. Nair,et al.  An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. , 2011, Journal of chemical theory and computation.

[30]  Carl Caleman,et al.  GROMACS molecule & liquid database , 2012, Bioinform..

[31]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[32]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[33]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[34]  Erwin Laure,et al.  Solving Software Challenges for Exascale , 2014, Lecture Notes in Computer Science.

[35]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[36]  Y. Okamoto,et al.  Numerical comparisons of three recently proposed algorithms in the protein folding problem , 1997 .

[37]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[38]  Vijay S. Pande,et al.  Screen Savers of the World Unite! , 2000, Science.

[39]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[40]  David E. Shaw,et al.  Zonal methods for the parallel execution of range-limited N-body simulations , 2007, J. Comput. Phys..

[41]  Scott Lathrop,et al.  Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis , 2011, International Conference on High Performance Computing.

[42]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.