Imaging image processing in the human brain

Functional imaging in humans reveals the interplay of the many components of the human visual system: how they process the various types of information contained in the image to recover characteristics of the three-dimensional world surrounding us, but also how, in the course of this process, the retinal image is gradually integrated with non-retinal signals to provide information about the outside world in a format useful to other non-visual brain regions.

[1]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  M. Corbetta,et al.  A PET study of visuospatial attention , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[4]  G. Orban,et al.  Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque , 1997, Neuroreport.

[5]  G A Orban,et al.  Brain activity underlying stereotyped and non‐stereotyped retrieval of learned stimulus–response associations , 1999, The European journal of neuroscience.

[6]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[7]  G. Orban,et al.  A motion area in human visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[8]  G. Orban,et al.  Attention Mechanisms in Visual SearchAn fMRI Study , 2000, Journal of Cognitive Neuroscience.

[9]  Ravi S. Menon,et al.  Motor Area Activity During Mental Rotation Studied by Time-Resolved Single-Trial fMRI , 2000, Journal of Cognitive Neuroscience.

[10]  M. Meng,et al.  Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI+ERP study , 1999, Human brain mapping.

[11]  J. Baron,et al.  Mapping the Visual Recognition Memory Network with PET in the Behaving Baboon , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[12]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[13]  Stephen M. Rao,et al.  Neural Basis of Endogenous and Exogenous Spatial Orienting: A Functional MRI Study , 1999, Journal of Cognitive Neuroscience.

[14]  T. Allison,et al.  Face-sensitive regions in human extrastriate cortex studied by functional MRI. , 1995, Journal of neurophysiology.

[15]  K. Rockland,et al.  A transient deficit of motion perception in human , 2000, Vision Research.

[16]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[17]  M. Tarr,et al.  Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects , 1999, Nature Neuroscience.

[18]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[19]  Leslie G. Ungerleider,et al.  Texture segregation in the human visual cortex: A functional MRI study. , 2000, Journal of neurophysiology.

[20]  A. Nobre,et al.  Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts , 2000, Neuropsychologia.

[21]  Michèle Fabre-Thorpe,et al.  Brain Areas Involved in Rapid Categorization of Natural Images: An Event-Related fMRI Study , 2000, NeuroImage.

[22]  I. Gauthier,et al.  Expertise for cars and birds recruits brain areas involved in face recognition , 2000, Nature Neuroscience.

[23]  N. Kanwisher,et al.  Activation in Human MT/MST by Static Images with Implied Motion , 2000, Journal of Cognitive Neuroscience.

[24]  G. Orban,et al.  Functional magnetic resonance imaging in an awake rhesus monkey , 1998 .

[25]  Bruce R. Rosen,et al.  Activity in Ventrolateral and Mid-Dorsolateral Prefrontal Cortex during Nonspatial Visual Working Memory Processing: Evidence from Functional Magnetic Resonance Imaging , 2000, NeuroImage.

[26]  J Nuyts,et al.  Different perceptual tasks performed with the same visual stimulus attribute activate different regions of the human brain: a positron emission tomography study. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Guy Orban,et al.  The Role of Lateral Occipitotemporal Junction and Area MT/V5 in the Visual Analysis of Upper-Limb Postures , 2000, NeuroImage.

[28]  T Nakada,et al.  Perceptual processing of stereopsis in humans: high-field (3.0-tesla) functional MRI study. , 1999, Neurology.

[29]  M Dojat,et al.  Moving illusory contours activate primary visual cortex: an fMRI study. , 2000, Cerebral cortex.

[30]  Leslie G. Ungerleider,et al.  Complementary neural mechanisms for tracking items in human working memory. , 2000, Science.

[31]  Karl J. Friston,et al.  Attentional modulation of effective connectivity from V2 to V5/MT in humans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Leslie G. Ungerleider,et al.  Distinguishing the Functional Roles of Multiple Regions in Distributed Neural Systems for Visual Working Memory , 2000, NeuroImage.

[33]  C. Frith,et al.  Inattentional blindness versus inattentional amnesia for fixated but ignored words. , 1999, Science.

[34]  Nancy Kanwisher,et al.  fMRI evidence for objects as the units of attentional selection , 1999, Nature.

[35]  A. Nobre,et al.  Where and When to Pay Attention: The Neural Systems for Directing Attention to Spatial Locations and to Time Intervals as Revealed by Both PET and fMRI , 1998, The Journal of Neuroscience.

[36]  R. Tootell,et al.  Projection of rods and cones within human visual cortex , 2000, Human brain mapping.

[37]  Y Miyashita,et al.  Mapping of somatosensory cortices with functional magnetic resonance imaging in anaesthetized macaque monkeys , 1999, The European journal of neuroscience.

[38]  B R Postle,et al.  "What"-Then-Where" in visual working memory: an event-related fMRI study. , 1999, Journal of cognitive neuroscience.

[39]  G. Orban,et al.  Attention to Speed of Motion, Speed Discrimination, and Task Difficulty: An fMRI Study , 2000, NeuroImage.

[40]  Joseph S. Gati,et al.  Eye Position Signal Modulates a Human Parietal Pointing Region during Memory-Guided Movements , 2000, The Journal of Neuroscience.

[41]  Jonathan D. Cohen,et al.  Working Memory for Letters, Shapes, and Locations: fMRI Evidence against Stimulus-Based Regional Organization in Human Prefrontal Cortex , 2000, NeuroImage.

[42]  Scott T. Grafton,et al.  Neural Evidence Linking Visual Object Enumeration and Attention , 1999, Journal of Cognitive Neuroscience.

[43]  G A Orban,et al.  Human brain regions involved in direction discrimination. , 1998, Journal of neurophysiology.

[44]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[45]  Russell A. Epstein,et al.  The Parahippocampal Place Area Recognition, Navigation, or Encoding? , 1999, Neuron.

[46]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[47]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Daniel L. Schacter,et al.  Brain regions associated with retrieval of structurally coherent visual information , 1995, Nature.

[49]  G. Orban,et al.  Three-Dimensional Shape Coding in Inferior Temporal Cortex , 2000, Neuron.

[50]  B. Postle,et al.  “ What ” — Then — “ Where ” in Visual Working Memory : An Event-Related fMRI Study , 2000 .

[51]  K. Grill-Spector,et al.  The dynamics of object-selective activation correlate with recognition performance in humans , 2000, Nature Neuroscience.

[52]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[54]  Ravi S. Menon,et al.  A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. , 2000, Journal of neurophysiology.

[55]  M. Thioux,et al.  Neuroanatomical Substrates of Arabic Number Processing, Numerical Comparison, and Simple Addition: A PET Study , 2000, Journal of Cognitive Neuroscience.

[56]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[58]  S. Pollmann,et al.  A Fronto-Posterior Network Involved in Visual Dimension Changes , 2000, Journal of Cognitive Neuroscience.

[59]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[60]  G. Glover,et al.  Dissociating Prefrontal and Parietal Cortex Activation during Arithmetic Processing , 2000, NeuroImage.

[61]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[62]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[63]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[64]  J. Mazziotta,et al.  A Locus in Human Extrastriate Cortex for Visual Shape Analysis , 1997, Journal of Cognitive Neuroscience.

[65]  S. Dehaene,et al.  Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing , 1999, Journal of Cognitive Neuroscience.

[66]  Brian A Wandell,et al.  Color Signals in Human Motion-Selective Cortex , 1999, Neuron.

[67]  A. T. Smith,et al.  Attentional suppression of activity in the human visual cortex , 2000, Neuroreport.

[68]  D. Heeger,et al.  Task-related modulation of visual cortex. , 2000, Journal of neurophysiology.

[69]  R J Ilmoniemi,et al.  Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. , 1999, Journal of neurophysiology.

[70]  J. Gore,et al.  A Stimulus-Driven Approach to Object Identity and Location Processing in the Human Brain , 2000, Neuron.

[71]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[72]  J Driver,et al.  Selective spatial attention in vision and touch: unimodal and multimodal mechanisms revealed by PET. , 2000, Journal of neurophysiology.

[73]  B. Gulyás,et al.  Neuronal correlates of real and illusory contour perception: functional anatomy with PET , 1999, The European journal of neuroscience.

[74]  A Berthoz,et al.  Visual perception of motion and 3-D structure from motion: an fMRI study. , 2000, Cerebral cortex.

[75]  Y. Miyashita,et al.  Neural representation of visual objects: encoding and top-down activation , 2000, Current Opinion in Neurobiology.

[76]  B. Postle,et al.  An fMRI Investigation of Cortical Contributions to Spatial and Nonspatial Visual Working Memory , 2000, NeuroImage.

[77]  Jonathan E. Jennings,et al.  An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. , 1999, Cerebral cortex.

[78]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[79]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[80]  A. Villringer,et al.  Involvement of the human frontal eye field and multiple parietal areas in covert visual selection during conjunction search , 2000, The European journal of neuroscience.

[81]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. , 1988, Journal of neurophysiology.

[82]  B. Wandell,et al.  Topographic Organization of Human Visual Areas in the Absence of Input from Primary Cortex , 1999, The Journal of Neuroscience.

[83]  Alan C. Evans,et al.  The Neural Substrate of Picture Naming , 1999, Journal of Cognitive Neuroscience.

[84]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[85]  R Vogels,et al.  Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[86]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[87]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[88]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[89]  Guy Marchal,et al.  Human Cortical Regions Involved in Extracting Depth from Motion , 1999, Neuron.

[90]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[91]  E. Bullmore,et al.  The functional neuroanatomy of implicit-motion perception or ‘representational momentum’ , 2000, Current Biology.

[92]  G. Orban,et al.  Activity of inferior temporal neurons during orientation discrimination with successively presented gratings. , 1994, Journal of neurophysiology.

[93]  G. Orban,et al.  Separate neural correlates for the mnemonic components of successive discrimination and working memory tasks. , 2001, Cerebral cortex.

[94]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[95]  S. Zeki,et al.  Human area V5 and motion in the ipsilateral visual field , 2000, The European journal of neuroscience.

[96]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[97]  M Dieterich,et al.  Hemifield visual motion stimulation: An example of interhemispheric crosstalk , 2000, Neuroreport.

[98]  G A Orban,et al.  Regional brain activity during shape recognition impaired by a scopolamine challenge to encoding , 1999, The European journal of neuroscience.

[99]  G A Orban,et al.  Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. , 2000, Cerebral cortex.

[100]  F. Sengpiel,et al.  Visual attention: spotlight on the primary visual cortex. , 1999, Current biology : CB.

[101]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[102]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[103]  R Vogels,et al.  Human Brain Activity Related to Orientation Discrimination Tasks , 1997, The European journal of neuroscience.

[104]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[105]  R. Vogels,et al.  Effect of image scrambling on inferior temporal cortical responses. , 1999, Neuroreport.

[106]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[107]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[108]  F. Sengpiel,et al.  Visual perception: Spotlight on the primary visual cortex , 1999, Current Biology.

[109]  Joel R. Meyer,et al.  A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. , 1999, Brain : a journal of neurology.

[110]  N. J. Herrod,et al.  Maintaining and shifting attention within left or right hemifield. , 2000, Cerebral cortex.

[111]  Leslie G. Ungerleider,et al.  Distributed representation of objects in the human ventral visual pathway. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[112]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.