Random Ensembles of Lattices From Generalized Reductions

We propose a general framework to study constructions of Euclidean lattices from linear codes over finite fields. In particular, we prove general conditions for an ensemble constructed using linear codes to contain dense lattices (i.e., with packing density comparable to the Minkowski–Hlawka lower bound). Specializing to number field lattices, we obtain a number of interesting corollaries - for instance, the best known packing density of ideal lattices, and an elementary coding-theoretic construction of asymptotically dense Hurwitz lattices. All results are algorithmically effective, in the sense that, for any dimension, a finite family containing dense lattices is exhibited. For suitable constructions based on Craig’s lattices, this family is smaller, in terms of alphabet-size, than previous ensembles in the literature.

[1]  Simon Litsyn,et al.  Lattices which are good for (almost) everything , 2005, IEEE Transactions on Information Theory.

[2]  Henry B. Mann,et al.  Introduction to algebraic number theory , 1955 .

[3]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[4]  Gábor Fejes Tóth,et al.  Packing and Covering , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[5]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[6]  J. Clerk A lower bound on packing density , 1989 .

[7]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[8]  Variétés abéliennes et théorème de Minkowski–Hlawka , 2016 .

[9]  Yu-Chih Huang,et al.  Adaptive compute-and-forward with lattice codes over algebraic integers , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[10]  Akshay Venkatesh A Note on Sphere Packings in High Dimension , 2013 .

[11]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[12]  Frédérique E. Oggier,et al.  Constructions a of lattices from number fields and division algebras , 2014, 2014 IEEE International Symposium on Information Theory.

[13]  Cong Ling,et al.  Algebraic lattice codes achieve the capacity of the compound block-fading channel , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[14]  Philippe Gaborit,et al.  On the construction of dense lattices with A given automorphisms group , 2007 .

[15]  Philippe Moustrou On the density of cyclotomic lattices constructed from codes , 2016, 1603.00743.

[16]  P. Gruber,et al.  Convex and Discrete Geometry , 2007 .

[17]  Cong Ling,et al.  Semantically Secure Lattice Codes for the Gaussian Wiretap Channel , 2012, IEEE Transactions on Information Theory.

[18]  Christine Bachoc,et al.  Etude Algorithmique de Réseaux Construits avec la Forme Trace , 1992, Exp. Math..

[19]  Frédérique E. Oggier,et al.  Construction A of Lattices Over Number Fields and Block Fading (Wiretap) Coding , 2014, IEEE Transactions on Information Theory.

[20]  Yu-Chih Huang,et al.  Lattice Index Codes From Algebraic Number Fields , 2015, IEEE Transactions on Information Theory.

[21]  I. Stewart,et al.  Algebraic Number Theory and Fermat's Last Theorem , 2015 .

[22]  F. Thorne,et al.  Geometry of Numbers , 2017, Algebraic Number Theory.

[23]  Carl Ludwig Siegel,et al.  A Mean Value Theorem in Geometry of Numbers , 1945 .

[24]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[25]  S. Vance Improved sphere packing lower bounds from Hurwitz lattices , 2011, 1105.3779.

[26]  J. Neukirch Algebraic Number Theory , 1999 .

[27]  J. A. Rush A lower bound on packing density , 1989 .

[28]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[29]  Arnold Pizer On the arithmetic of quaternion algebras , 1976 .