Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1.

Vision emerges from activation of chromatic and achromatic retinal channels whose interaction in visual cortex is still poorly understood. To investigate this interaction, we recorded neuronal activity from retinal ganglion cells and V1 cortical cells in macaques and measured their visual responses to grating stimuli that had either luminance contrast (luminance grating), chromatic contrast (chromatic grating), or a combination of the two (compound grating). As with parvocellular or koniocellular retinal ganglion cells, some V1 cells responded mostly to the chromatic contrast of the compound grating. As with magnocellular retinal ganglion cells, other V1 cells responded mostly to the luminance contrast and generated a frequency-doubled response to equiluminant chromatic gratings. Unlike magnocellular and parvocellular retinal ganglion cells, V1 cells formed a unimodal distribution for luminance/color preference with a 2- to 4-fold bias toward luminance. V1 cells associated with positive local field potentials in deep layers showed the strongest combined responses to color and luminance and, as a population, V1 cells encoded a diverse combination of luminance/color edges that matched edge distributions of natural scenes. Taken together, these results suggest that the primary visual cortex combines magnocellular and parvocellular retinal inputs to increase cortical receptive field diversity and to optimize visual processing of our natural environment.

[1]  S. Vijay Anand,et al.  The linearity and selectivity of neuronal responses in awake visual cortex. , 2009, Journal of vision.

[2]  Bevil R. Conway,et al.  Spatial Structure of Cone Inputs to Color Cells in Alert Macaque Primary Visual Cortex (V-1) , 2001, The Journal of Neuroscience.

[3]  Paul R. Martin,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[4]  R. D. de Valois,et al.  Color Vision Mechanisms in the Monkey , 1960, The Journal of general physiology.

[5]  D. Baylor,et al.  Receptive-field microstructure of blue-yellow ganglion cells in primate retina , 1999, Nature Neuroscience.

[6]  R. Shapley,et al.  Space and Time Maps of Cone Photoreceptor Signals in Macaque Lateral Geniculate Nucleus , 2002, The Journal of Neuroscience.

[7]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[8]  D. Ts'o,et al.  Color processing in macaque striate cortex: electrophysiological properties. , 2002, Journal of neurophysiology.

[9]  A. R. Rao,et al.  Statistics of natural scenes and cortical color processing. , 2010, Journal of vision.

[10]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[11]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[12]  R. L. de Valois,et al.  Analysis and coding of color vision in the primate visual system. , 1965, Cold Spring Harbor symposia on quantitative biology.

[13]  Amir Shmuel,et al.  The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. , 2003, Cerebral cortex.

[14]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[15]  Hong Zhou,et al.  The coding of uniform colour figures in monkey visual cortex , 2003, The Journal of physiology.

[16]  Andriana Olmos,et al.  A biologically inspired algorithm for the recovery of shading and reflectance images , 2004 .

[17]  Paul R. Martin,et al.  Segregation of short-wavelength-sensitive (S) cone signals in the macaque dorsal lateral geniculate nucleus , 2009, The European journal of neuroscience.

[18]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[19]  P. Lennie,et al.  Functional Asymmetries in Visual Pathways Carrying S-Cone Signals in Macaque , 2008, The Journal of Neuroscience.

[20]  Bevil R. Conway,et al.  Advances in Color Science: From Retina to Behavior , 2010, The Journal of Neuroscience.

[21]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[22]  R. Shapley,et al.  The Orientation Selectivity of Color-Responsive Neurons in Macaque V1 , 2008, The Journal of Neuroscience.

[23]  Alexander Maier,et al.  Infragranular Sources of Sustained Local Field Potential Responses in Macaque Primary Visual Cortex , 2011, The Journal of Neuroscience.

[24]  Bevil R. Conway,et al.  Color contrast in macaque V1. , 2002, Cerebral cortex.

[25]  B. B. Lee,et al.  Visual resolution of macaque retinal ganglion cells. , 1988, The Journal of physiology.

[26]  G. Horwitz,et al.  Nonlinear analysis of macaque V1 color tuning reveals cardinal directions for cortical color processing , 2012, Nature Neuroscience.

[27]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Bevil R. Conway,et al.  Spatial and Temporal Properties of Cone Signals in Alert Macaque Primary Visual Cortex , 2006, The Journal of Neuroscience.

[29]  B. Dow,et al.  Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex , 1996, Behavioural Brain Research.

[30]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[31]  B. B. Lee,et al.  The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. , 1988, The Journal of physiology.

[32]  R. Shapley,et al.  Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus , 1992, Nature.

[33]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[34]  Chun-I Yeh,et al.  Laminar analysis of visually evoked activity in the primary visual cortex , 2012, Proceedings of the National Academy of Sciences.

[35]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[36]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[37]  G. Legge,et al.  Comparing reading speed for horizontal and vertical English text. , 2010, Journal of vision.

[38]  E J Chichilnisky,et al.  Cone inputs to simple and complex cells in V1 of awake macaque. , 2007, Journal of neurophysiology.

[39]  Harvey A Swadlow,et al.  A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes. , 2005, Journal of neurophysiology.

[40]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[41]  K. Gegenfurtner,et al.  Cortical mechanisms of colour vision , 2003, Nature Reviews Neuroscience.

[42]  T D Albright,et al.  What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  Bb Lee,et al.  Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Lawrence C. Sincich,et al.  Orientation Tuning of Cytochrome Oxidase Patches in Macaque Primary Visual Cortex , 2011, Nature Neuroscience.

[45]  P Gouras,et al.  Enchancement of luminance flicker by color-opponent mechanisms. , 1979, Science.

[46]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[47]  Barry B. Lee,et al.  Segregation of chromatic and luminance signals using a novel grating stimulus , 2011, The Journal of physiology.

[48]  J. Pokorny,et al.  Responses of macaque ganglion cells to the relative phase of heterochromatically modulated lights. , 1992, The Journal of physiology.

[49]  BsnNr C. Srorn,et al.  CLASSIFYING SIMPLE AND COMPLEX CELLS ON THE BASIS OF RESPONSE MODULATION , 2002 .

[50]  Alex R. Wade,et al.  Attentional Modulation of fMRI Responses in Human V1 Is Consistent with Distinct Spatial Maps for Chromatically Defined Orientation and Contrast , 2011, The Journal of Neuroscience.

[51]  David Barner Constructing exact number approximately: a case study of mental abacus representations , 2010 .

[52]  Harvey A Swadlow,et al.  Response Properties of Local Field Potentials and Neighboring Single Neurons in Awake Primary Visual Cortex , 2012, The Journal of Neuroscience.

[53]  B. B. Lee,et al.  Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. , 1989, The Journal of physiology.

[54]  Nilli Lavie,et al.  The fate of task-irrelevant visual motion: perceptual load versus feature-based attention. , 2009, Journal of vision.

[55]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[59]  P. Gouras Identification of cone mechanisms in monkey ganglion cells , 1968, The Journal of physiology.

[60]  B. Dow Functional classes of cells and their laminar distribution in monkey visual cortex. , 1974, Journal of neurophysiology.

[61]  G. Poggio,et al.  Spatial and chromatic properties of neurons subserving foveal and parafoveal vision in rhesus monkey , 1975, Brain Research.

[62]  Maneesh Agrawala,et al.  The influence of shape cues on the perception of lighting direction. , 2010, Journal of vision.

[63]  Barry B. Lee Visual pathways and psychophysical channels in the primate , 2011, The Journal of physiology.

[64]  D. G. Albrecht,et al.  Spatial mapping of monkey VI cells with pure color and luminance stimuli , 1984, Vision Research.

[65]  Robbe L. T. Goris,et al.  A neurophysiologically plausible population code model for human contrast discrimination. , 2009, Journal of vision.

[66]  Hao Sun,et al.  The chromatic input to cells of the magnocellular pathway of primates. , 2009, Journal of vision.

[67]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[68]  R. Shapley,et al.  Color in the Cortex: single- and double-opponent cells , 2011, Vision Research.

[69]  Paul R. Martin,et al.  Specificity of M and L Cone Inputs to Receptive Fields in the Parvocellular Pathway: Random Wiring with Functional Bias , 2006, The Journal of Neuroscience.

[70]  Karl R Gegenfurtner,et al.  Geometry in Nature , 1993 .

[71]  Guillermo Sapiro,et al.  A subspace reverse-correlation technique for the study of visual neurons , 1997, Vision Research.

[72]  Barry B. Lee,et al.  Specificity of cone inputs to macaque retinal ganglion cells. , 2006, Journal of neurophysiology.

[73]  Barry B. Lee,et al.  Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[74]  Ching-Jen Chen,et al.  Flow visualization of bubble collapse flow , 2007, J. Vis..

[75]  Paul R. Martin,et al.  Slow intrinsic rhythm in the koniocellular visual pathway , 2011, Proceedings of the National Academy of Sciences.

[76]  S. Zeki The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.