Globally optimized packings of non-uniform size spheres in $$\mathbb {R}^{d}$$Rd: a computational study

In this work we discuss the following general packing problem: given a finite collection of d-dimensional spheres with (in principle) arbitrarily chosen radii, find the smallest sphere in $$\mathbb {R}^{d}$$Rd that contains the given d-spheres in a non-overlapping arrangement. Analytical (closed-form) solutions cannot be expected for this very general problem-type: therefore we propose a suitable combination of constrained nonlinear optimization methodology with specifically designed heuristic search strategies, in order to find high-quality numerical solutions in an efficient manner. We present optimized sphere configurations with up to $$n = 50$$n=50 spheres in dimensions $$d = 2, 3, 4, 5$$d=2,3,4,5. Our numerical results are on average within 1% of the entire set of best known results for a well-studied model-instance in $$\mathbb {R}^{2}$$R2, with new (conjectured) packings for previously unexplored generalizations of the same model-class in $$\mathbb {R}^{d}$$Rd with $$d= 3, 4, 5.$$d=3,4,5. Our results also enable the estimation of the optimized container sphere radii and of the packing fraction as functions of the model instance parameters n and 1 / n, respectively. These findings provide a general framework to define challenging packing problem-classes with conjectured numerical solution estimates.

[1]  T. Hales The Kepler conjecture , 1998, math/9811078.

[2]  Tarek I. Zohdi Variational bounds for thermal fields in media with heterogeneous microstructure , 2014 .

[3]  Henry Cohn,et al.  The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.

[4]  V. Nesterenko,et al.  Dynamics of Heterogeneous Materials , 2001 .

[5]  Magnus Steinby,et al.  Trees and Term Rewriting in 1910 : On a Paperby Axel Thue , 2007 .

[6]  John H. Conway,et al.  Sphere Packings, Lattices, Codes, and Greed , 1995 .

[7]  Tarek I. Zohdi,et al.  Additive particle deposition and selective laser processing-a computational manufacturing framework , 2014 .

[8]  J. Kepler,et al.  The Six-Cornered Snowflake , 1966 .

[9]  Luis Olmos,et al.  Sintering of mixtures of powders: Experiments and modelling , 2009 .

[10]  János D. Pintér,et al.  Benchmarking nonlinear optimization software in technical computing environments , 2013 .

[11]  S. Torquato Random Heterogeneous Materials , 2002 .

[12]  Giorgio Fasano Solving Non-standard Packing Problems by Global Optimization and Heuristics , 2014 .

[13]  Ignacio Castillo,et al.  A spring-embedding approach for the facility layout problem , 2004, J. Oper. Res. Soc..

[14]  Mhand Hifi,et al.  A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies , 2009, Adv. Oper. Res..

[15]  N.J.A. Sloane The Sphere-Packing Problem , 1998 .

[16]  Ryan Jadrich,et al.  Equilibrium theory of the hard sphere fluid and glasses in the metastable regime up to jamming. I. Thermodynamics. , 2013, The Journal of chemical physics.

[17]  Ignacio Castillo Business Statistics for Contemporary Decision Making , 2014 .

[18]  Paul M. Chaikin Thermodynamics and hydrodynamics of hard spheres: the role of gravity , 2000 .

[19]  Tibor Csendes,et al.  New Approaches to Circle Packing in a Square - With Program Codes , 2007, Optimization and its applications.

[20]  Claude M. Penchina,et al.  The physics of amorphous solids , 1983 .

[21]  J. Pintér,et al.  Nonlinear Optimization in Mathematica with MathOptimizer Professional , 2005 .

[22]  Robert L. Griess,et al.  An introduction to groups and lattices : finite groups and positive definite rational lattices , 2011 .

[23]  János D. Pintér,et al.  Finding elliptic Fekete points sets: two numerical solution approaches , 2001 .

[24]  Ignacio Castillo,et al.  A Logarithmic Barrier Approach To Solving The Dashboard Planning Problem , 2003 .

[25]  Muhammad Sahimi,et al.  Linear transport and optical properties , 2003 .

[26]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[27]  János D. Pintér,et al.  Global optimization in action , 1995 .

[28]  János D. Pintér,et al.  How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results , 2018, Ann. Oper. Res..

[29]  Giorgio Fasano,et al.  Optimized packings with applications , 2015 .

[30]  János D. Pintér Globally Optimized Spherical Point Arrangements: Model Variants and Illustrative Results , 2001, Ann. Oper. Res..

[31]  P. G. de Gennes,et al.  Granular Matter: A Tentative View , 1999 .

[32]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  Robert L. Griess,et al.  Positive definite lattices of rank at most 8 , 2003 .

[35]  János D. Pintér,et al.  Solving circle packing problems by global optimization: Numerical results and industrial applications , 2008, Eur. J. Oper. Res..

[36]  János D. Pintér,et al.  MathOptimizer Professional: Key Features and Illustrative Applications , 2006 .

[37]  Henry Cohn,et al.  Order and disorder in energy minimization , 2010, 1003.3053.

[38]  T. Lubensky,et al.  Principles of condensed matter physics , 1995 .

[39]  J. D. Pinter,et al.  Configuration Analysis and Design by Using Optimization Tools in Mathematica , 2006 .

[40]  János D. Pintér,et al.  LGO — A Program System for Continuous and Lipschitz Global Optimization , 1997 .

[41]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[42]  J. Leech Notes on Sphere Packings , 1967, Canadian Journal of Mathematics.

[43]  Zhengdong Cheng,et al.  Controlled growth of hard-sphere colloidal crystals , 1999, Nature.