Illuminating the capabilities of Landsat 8 for mapping night lights

Abstract Remote sensing of night-lights has been enhanced in recent years with the availability of the new VIIRS Day and Night band, the commercial EROS-B satellite and astronaut photographs from the International Space Station. However, dedicated space-borne multispectral sensors offering radiance calibrated night lights imagery are yet to be launched. Here we examined the capabilities of Landsat 8 to acquire night time light images of the Earth. Examining seven night-time Landsat 8 scenes, we found that brightly lit areas in both urban (Berlin, Las Vegas, Nagoya and Tel-Aviv) and gas flares (Basra, Kuwait) areas were detected in all eight bands of Landsat 8. The threshold for detection of lit areas was approximately 0.4 W/m 2 /μm/sr in bands 1–5 and 8 of Landsat 8. This threshold level was higher than Landsat dark noise levels, and slightly lower than post launch Landsat 8 OLI band dependent noise equivalent radiance difference levels. Drawing on this, we call on the USGS to plan an annual night-time acquisition of urban and gas flares areas globally, and to enable the performance of the future Landsat 10 to be established in a way that it will be sensitive enough to image the Earth at night, thus performing as Nightsat during the night.

[1]  Christopher D. Elvidge,et al.  Daytime gas flare detection using Landsat-8 multispectral data , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[2]  Guangjian Yan,et al.  Noise evaluation of early images for Landsat 8 Operational Land Imager. , 2014, Optics express.

[3]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[4]  Christopher D. F. Rogers,et al.  Mapping Lightscapes: Spatial Patterning of Artificial Lighting in an Urban Landscape , 2013, PloS one.

[5]  Christian Wolter,et al.  Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany , 2012 .

[6]  Travis Longcore,et al.  Ecological light pollution , 2004 .

[7]  W. Schroeder,et al.  Active fire detection using Landsat-8/OLI data , 2016 .

[8]  J. Schwartz,et al.  Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring. , 2016, Environmental pollution.

[9]  Fred A. Kruse,et al.  Identifying and mapping night lights using imaging spectrometry , 2011, 2011 Aerospace Conference.

[10]  Jonathan Bennie,et al.  The ecological impacts of nighttime light pollution: a mechanistic appraisal , 2013, Biological reviews of the Cambridge Philosophical Society.

[11]  Christopher Doll CIESIN Thematic Guide to Night-time Light Remote Sensing and its Applications , 2008 .

[12]  Steven D. Miller,et al.  Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band , 2013, Remote. Sens..

[13]  C. Elvidge,et al.  Why VIIRS data are superior to DMSP for mapping nighttime lights , 2013 .

[14]  Samuel N. Goward,et al.  Building a global, consistent, and meaningful Landsat 7 data archive , 2000, SPIE Defense + Commercial Sensing.

[15]  Christopher D. Elvidge,et al.  Spectral Identification of Lighting Type and Character , 2010, Sensors.

[16]  C. Elvidge,et al.  Limiting the impact of light pollution on human health, environment and stellar visibility. , 2011, Journal of environmental management.

[17]  Changyong Cao,et al.  Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring , 2014, Remote. Sens..

[18]  Mintai Kim,et al.  Relationship between the reflected brightness of artificial lighting and land-use types: a case study of the University of Arizona campus , 2013, Landscape and Ecological Engineering.

[19]  Mikhail Zhizhin,et al.  Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data , 2015 .

[20]  Lawrence Ong,et al.  Landsat-8 Operational Land Imager Radiometric Calibration and Stability , 2014, Remote. Sens..

[21]  J. D. Whyatt,et al.  Satellite survey of gas flares: development and application of a Landsat-based technique in the Niger Delta , 2014 .

[22]  Chengcui Zhang,et al.  A progressive morphological filter for removing nonground measurements from airborne LIDAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  Jaime Zamorano,et al.  Atlas of astronaut photos of Earth at night , 2014 .

[24]  S. K. Srivastav,et al.  Application of thematic mapper short wavelength infrared data for the detection and monitoring of high temperature related geoenvironmental features , 1993 .

[25]  Christopher D. Elvidge,et al.  Automatic Boat Identification System for VIIRS Low Light Imaging Data , 2015, Remote. Sens..

[26]  Christopher D. Elvidge,et al.  Potential for global mapping of development via a nightsat mission , 2007 .

[27]  Stuart R. Phinn,et al.  A new source for high spatial resolution night time images — The EROS-B commercial satellite , 2014 .

[28]  Noam Levin,et al.  Quantifying urban light pollution — A comparison between field measurements and EROS-B imagery , 2016 .

[29]  Lawrence Ong,et al.  Landsat-8 Operational Land Imager (OLI) Radiometric Performance On-Orbit , 2015, Remote. Sens..

[30]  Yang Yang,et al.  Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review , 2014, Remote. Sens..

[31]  Clive Oppenheimer,et al.  Infrared image analysis of volcanic thermal features: Láscar Volcano, Chile, 1984–1992 , 1993 .

[32]  Alejandro Sánchez de Miguel,et al.  Variación espacial, temporal y espectral de la contaminación lumínica y sus fuentes: Metodología y resultados , 2015 .

[33]  Christopher D. Elvidge,et al.  VIIRS Nightfire: Satellite Pyrometry at Night , 2013, Remote. Sens..

[34]  T. Croft Nighttime Images of the Earth from Space , 1978 .

[35]  C. Elvidge,et al.  Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption , 1997 .

[36]  Darrel L. Williams,et al.  Landsat-7 Long-Term Acquisition Plan: Development and Validation , 2006 .

[37]  C. Elvidge,et al.  Spatial analysis of global urban extent from DMSP-OLS night lights , 2005 .

[38]  Stephen P. Mills,et al.  Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities , 2012, Proceedings of the National Academy of Sciences.

[39]  D. Roberts,et al.  Census from Heaven: An estimate of the global human population using night-time satellite imagery , 2001 .

[40]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[41]  Zoltán Vekerdy,et al.  Monitoring coal fires using multi - temporal night time thermal images in a coalfield in north west China , 1999 .

[42]  Suwarsono,et al.  Long-wave infrared identification of smoldering peat fires in Indonesia with nighttime Landsat data , 2015 .

[43]  Boulder,et al.  The first World Atlas of the artificial night sky brightness , 2001, astro-ph/0108052.

[44]  Ramakrishna R. Nemani,et al.  International Journal of Remote Sensing the Nightsat Mission Concept the Nightsat Mission Concept , 2022 .

[45]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[46]  T. Croft,et al.  Burning Waste Gas in Oil Fields , 1973, Nature.