Rb1/Rbl1/Vhl loss induces mouse subretinal angiomatous proliferation and hemangioblastoma.

Von Hippel-Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl-/- retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl-/- retina. RNA sequencing, ChIP and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus (SVP). Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1-deficient retina, but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP), and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH-like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl-/- retina, and removing this inhibitory signal generates new models for RAP and RCH.

[1]  C. Grimm,et al.  Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia , 2018, Molecular Neurodegeneration.

[2]  C. Grimm,et al.  Targeting Hif1a rescues cone degeneration and prevents subretinal neovascularization in a model of chronic hypoxia , 2018, Molecular Neurodegeneration.

[3]  Suying Lu,et al.  Rb is required for retinal angiogenesis and lamination , 2018, Cell Death & Disease.

[4]  W. Rathmell,et al.  Von Hippel-Lindau mutations disrupt vascular patterning and maturation via Notch. , 2018, JCI insight.

[5]  Danian Chen,et al.  DZNep inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice , 2018, Cell Death & Disease.

[6]  Danian Chen,et al.  E2f1 mediates high glucose-induced neuronal death in cultured mouse retinal explants , 2017, Cell cycle.

[7]  Nora C. Toussaint,et al.  Combined Vhl, Trp53 and Rb1 mutation causes clear cell renal cell carcinoma in mice , 2017, Nature Medicine.

[8]  T. Deierborg,et al.  Inflamed In Vitro Retina: Cytotoxic Neuroinflammation and Galectin-3 Expression , 2016, PloS one.

[9]  David S. Wishart,et al.  Heatmapper: web-enabled heat mapping for all , 2016, Nucleic Acids Res..

[10]  Andrew D. Rouillard,et al.  Enrichr: a comprehensive gene set enrichment analysis web server 2016 update , 2016, Nucleic Acids Res..

[11]  D. Nass,et al.  Identification of genomic aberrations in hemangioblastoma by droplet digital PCR and SNP microarray highlights novel candidate genes and pathways for pathogenesis , 2016, BMC Genomics.

[12]  I. Barshack,et al.  Identification of genomic aberrations in hemangioblastoma by droplet digital PCR and SNP microarray highlights novel candidate genes and pathways for pathogenesis , 2016, BMC Genomics.

[13]  J. Wrana,et al.  Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer , 2015, Nature.

[14]  Martin Friedlander,et al.  Neurovascular crosstalk between interneurons and capillaries is required for vision. , 2015, The Journal of clinical investigation.

[15]  E. Maher,et al.  VHL, the story of a tumour suppressor gene , 2014, Nature Reviews Cancer.

[16]  Kin F. Chan,et al.  Next-generation RNA sequencing of archival formalin-fixed paraffin-embedded urothelial bladder cancer. , 2014, European urology.

[17]  F. Cecconi,et al.  Oxidative stress and autophagy: the clash between damage and metabolic needs , 2014, Cell Death and Differentiation.

[18]  Joan W. Miller,et al.  Characterization of a Spontaneous Retinal Neovascular Mouse Model , 2014, PloS one.

[19]  E. Chew,et al.  Upregulation of hypoxia-inducible factors and autophagy in von Hippel–Lindau-associated retinal hemangioblastoma , 2014, Graefe's Archive for Clinical and Experimental Ophthalmology.

[20]  Grant W. Brown,et al.  Haploinsufficiency of an RB-E2F1-Condensin II complex leads to aberrant replication and aneuploidy. , 2014, Cancer discovery.

[21]  D. Zack,et al.  Transcription Factor SOX9 Plays a Key Role in the Regulation of Visual Cycle Gene Expression in the Retinal Pigment Epithelium* , 2014, The Journal of Biological Chemistry.

[22]  G. Semenza,et al.  Hypoxic retinal Müller cells promote vascular permeability by HIF-1–dependent up-regulation of angiopoietin-like 4 , 2013, Proceedings of the National Academy of Sciences.

[23]  M. Rosemann,et al.  Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability. , 2013, Cancer research.

[24]  S. Beck,et al.  Endothelial SRF/MRTF ablation causes vascular disease phenotypes in murine retinae. , 2013, The Journal of clinical investigation.

[25]  J. Pelletier,et al.  The von Hippel-Lindau Protein pVHL Inhibits Ribosome Biogenesis and Protein Synthesis* , 2013, The Journal of Biological Chemistry.

[26]  Avi Ma'ayan,et al.  Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool , 2013, BMC Bioinformatics.

[27]  S. Al-Salam,et al.  Galectin-3: a novel protein in cerebellar hemangioblastoma. , 2013, International journal of clinical and experimental pathology.

[28]  A. de Bruin,et al.  HIF proteins connect the RB-E2F factors to angiogenesis , 2013, Transcription.

[29]  Stanley Park,et al.  Von Hippel-Lindau disease (VHL): a need for a murine model with retinal hemangioblastoma. , 2012, Histology and histopathology.

[30]  E. L. West,et al.  Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development , 2012, Development.

[31]  G. Semenza,et al.  Hypoxia-Inducible Factors in Physiology and Medicine , 2012, Cell.

[32]  Xiaoling Liang,et al.  Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels , 2011, Molecular vision.

[33]  Brian Keith,et al.  HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression , 2011, Nature Reviews Cancer.

[34]  A. Knudson,et al.  A continuum model for tumour suppression , 2011, Nature.

[35]  C. Grimm,et al.  Normoxic activation of hypoxia-inducible factors in photoreceptors provides transient protection against light-induced retinal degeneration. , 2011, Investigative ophthalmology & visual science.

[36]  C. Grimm,et al.  HIF1A is essential for the development of the intermediate plexus of the retinal vasculature. , 2011, Investigative ophthalmology & visual science.

[37]  C. Grimm,et al.  Retina-specific activation of a sustained hypoxia-like response leads to severe retinal degeneration and loss of vision , 2011, Neurobiology of Disease.

[38]  H. Okano,et al.  von Hippel-Lindau protein regulates transition from the fetal to the adult circulatory system in retina , 2010, Development.

[39]  Clifford A. Meyer,et al.  Transcriptional role of cyclin D1 in development revealed by a genetic–proteomic screen , 2010, Nature.

[40]  G. Leone,et al.  Division and apoptosis of E2f-deficient retinal progenitors , 2009, Nature.

[41]  Y. Fujioka,et al.  Expression of inhibin α by stromal cells of retinal angiomas excised from a patient with von Hippel-Lindau disease , 2009, Japanese Journal of Ophthalmology.

[42]  D. Forrest,et al.  Developmental expression of thyroid hormone receptor &bgr;2 protein in cone photoreceptors in the mouse , 2009, Neuroreport.

[43]  J. Pouysségur,et al.  Hypoxia-Induced Autophagy Is Mediated through Hypoxia-Inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains , 2009, Molecular and Cellular Biology.

[44]  J. Sage,et al.  Cellular mechanisms of tumour suppression by the retinoblastoma gene , 2008, Nature Reviews Cancer.

[45]  David J. Wilson,et al.  Clinicopathologic correlation of retinal angiomatous proliferation. , 2008, Archives of ophthalmology.

[46]  G. Semenza,et al.  Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia* , 2008, Journal of Biological Chemistry.

[47]  S. Signoretti,et al.  VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400 , 2008, Nature Cell Biology.

[48]  N. Tanimoto,et al.  Rb-Mediated Neuronal Differentiation through Cell-Cycle–Independent Regulation of E2f3a , 2007, PLoS biology.

[49]  B. Spike,et al.  BNIP3 Is an RB/E2F Target Gene Required for Hypoxia-Induced Autophagy , 2007, Molecular and Cellular Biology.

[50]  Marcus Fruttiger,et al.  Development of the retinal vasculature , 2007, Angiogenesis.

[51]  S. Chellappan,et al.  Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. , 2006, The Journal of clinical investigation.

[52]  F. Martelli,et al.  Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  David S. Park,et al.  Apical role for BRG1 in cytokine-induced promoter assembly. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Andrew P. McMahon,et al.  WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature , 2005, Nature.

[55]  B. Brüne,et al.  Retinoblastoma susceptibility gene product pRB activates hypoxia-inducible factor-1 (HIF-1) , 2005, Oncogene.

[56]  Chi Li,et al.  Growth Factor Regulation of Autophagy and Cell Survival in the Absence of Apoptosis , 2005, Cell.

[57]  M. Gertsenstein,et al.  Mouse in red: Red fluorescent protein expression in mouse ES cells, embryos, and adult animals , 2004, Genesis.

[58]  J. Heckenlively,et al.  Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. , 2004, The Journal of clinical investigation.

[59]  T. Jacks,et al.  Cell type-specific effects of Rb deletion in the murine retina. , 2004, Genes & development.

[60]  M. Dyer,et al.  The First Knockout Mouse Model of Retinoblastoma , 2004 .

[61]  R. Slack,et al.  Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. , 2004, Cancer cell.

[62]  Martin Friedlander,et al.  MOUSE MODEL OF SUBRETINAL NEOVASCULARIZATION WITH CHOROIDAL ANASTOMOSIS , 2003, Retina.

[63]  R. Lonser,et al.  von Hippel-Lindau disease , 2003, The Lancet.

[64]  D. Mottet,et al.  CoCl2, a Chemical Inducer of Hypoxia‐Inducible Factor‐1, and Hypoxia Reduce Apoptotic Cell Death in Hepatoma Cell Line HepG2 , 2002, Annals of the New York Academy of Sciences.

[65]  Martha Kirby,et al.  Regulation of CSF1 Promoter by the SWI/SNF-like BAF Complex , 2001, Cell.

[66]  R. Lucas,et al.  Temporal and spatial expression patterns of the CRX transcription factor and its downstream targets. Critical differences during human and mouse eye development. , 2001, Human molecular genetics.

[67]  F. Guillemot,et al.  Pax6 Is Required for the Multipotent State of Retinal Progenitor Cells , 2001, Cell.

[68]  R. Jaenisch,et al.  Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Davisson,et al.  The bst locus on mouse chromosome 16 is associated with age-related subretinal neovascularization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[70]  P. Campochiaro,et al.  Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. , 1997, The American journal of pathology.

[71]  S. Elledge,et al.  Cyclin D1 provides a link between development and oncogenesis in the retina and breast , 1995, Cell.

[72]  F. Jakobiec,et al.  Angiomatosis retinae. An ultrastructural study and lipid analysis , 1976, Cancer.

[73]  C. Grimm,et al.  The Role of Hypoxia, Hypoxia-Inducible Factor (HIF), and VEGF in Retinal Angiomatous Proliferation. , 2018, Advances in experimental medicine and biology.

[74]  E. Chew,et al.  Deletion of the von Hippel-Lindau Gene in Hemangioblasts Causes Hemangioblastoma-like Lesions in Murine Retina. , 2018, Cancer research.

[75]  Joan W. Miller,et al.  Age-related macular degeneration revisited--piecing the puzzle: the LXIX Edward Jackson memorial lecture. , 2013, American journal of ophthalmology.

[76]  J. Slakter,et al.  Retinal angiomatous proliferation in age–related macular degeneration. 2001. , 2012, Retina.

[77]  David J. Wilson,et al.  Clinicopathologic correlation of choroidal and retinal neovascular lesions in age-related macular degeneration. , 2011, American journal of ophthalmology.

[78]  W. Sellers,et al.  Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. , 1998, Genes & development.

[79]  H. Grossniklaus,et al.  Retinal hemangioblastoma. A histologic, immunohistochemical, and ultrastructural evaluation. , 1992, Ophthalmology.

[80]  H. Grossniklaus,et al.  Retinal Hemangioblastoma: A Histologic, Immunohistochemical, and Ultrastructural Evaluation , 1992 .