Radiation Efficiency Cost of Resonance Tuning

Existing optimization methods are used to calculate the upper bounds on radiation efficiency with and without the constraint on self-resonance. These bounds are used for the design and assessment of small electric-dipole-type antennas. We demonstrate that the assumption of lossless, lumped, and external tuning skews the true nature of radiation efficiency bounds when practical material characteristics are used in the tuning network. A major result is that, when realistic (e.g., finite conductivity) materials are used, small antenna systems exhibit dissipation factors which scale as <inline-formula> <tex-math notation="LaTeX">$(ka)^{-4}$ </tex-math></inline-formula>, rather than <inline-formula> <tex-math notation="LaTeX">$({ka})^{-2}$ </tex-math></inline-formula> as previously predicted under the assumption of lossless external tuning.

[1]  H. Shirai,et al.  A study of the antenna radiation efficiency for electrically small antennas , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[2]  G. Smith Radiation efficiency of electrically small multiturn loop antennas , 1972 .

[3]  Kyohei Fujimoto,et al.  Modern Small Antennas , 2014 .

[4]  David V. Thiel,et al.  Fundamental Limitations for Antenna Radiation Efficiency , 2016, IEEE Transactions on Antennas and Propagation.

[5]  Mats Gustafsson,et al.  Minimization of Antenna Quality Factor , 2017, IEEE Transactions on Antennas and Propagation.

[6]  H. Thal,et al.  Radiation Efficiency Limits for Elementary Antenna Shapes , 2018, IEEE Transactions on Antennas and Propagation.

[7]  Jr. C. Harrison,et al.  Monopole with inductive loading , 1963 .

[8]  S. Best,et al.  Electrically Small Resonant Planar Antennas: Optimizing the quality factor and bandwidth. , 2015, IEEE Antennas and Propagation Magazine.

[9]  Mats Gustafsson,et al.  Tradeoff Between Antenna Efficiency and Q-Factor , 2017, IEEE Transactions on Antennas and Propagation.

[10]  G. Thiele,et al.  Antenna theory and design , 1981 .

[11]  Lukas Jelinek,et al.  Optimal Currents on Arbitrarily Shaped Surfaces , 2016, IEEE Transactions on Antennas and Propagation.

[12]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[13]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[14]  Roger F. Harrington,et al.  Antenna excitation for maximum gain , 1965 .

[15]  S.R. Best,et al.  On the significance of current vector alignment in establishing the resonant frequency of small space-filling wire antennas , 2003, IEEE Antennas and Wireless Propagation Letters.

[16]  Glenn S. Smith Efficiency of electrically small antennas combined with matching networks , 1977 .

[17]  H. Nagaoka,et al.  The Inductance Coefficients of Solenoids , 1909 .

[18]  M. Uzsoky,et al.  Theory of super-directive linear arrays , 1956 .

[19]  Steven R Best,et al.  A Performance Comparison of Fundamental Small-Antenna Designs , 2010, IEEE Antennas and Propagation Magazine.

[20]  Hiroshi Shirai,et al.  Theoretical Limitation of the Radiation Efficiency for Homogenous Electrically Small Antennas , 2015, IEICE Trans. Electron..

[21]  Carl Pfeiffer,et al.  Fundamental Efficiency Limits for Small Metallic Antennas , 2016, IEEE Transactions on Antennas and Propagation.

[22]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[23]  Anders Karlsson,et al.  On the efficiency and gain of antennas , 2006 .

[24]  Chi-Chih Chen,et al.  Small Antennas:Miniaturization Techniques & Applications , 2009 .

[25]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[26]  Mats Gustafsson,et al.  Dissipation Factors of Spherical Current Modes on Multiple Spherical Layers , 2018, IEEE Transactions on Antennas and Propagation.

[27]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[28]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .