A leader-follower model and analysis for a two-stage network of oligopolies
暂无分享,去创建一个
[1] J. Nash. NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.
[2] H. Ohta,et al. Vertical Integration of Successive Oligopolists , 1979 .
[3] S. Yakowitz,et al. A New Proof of the Existence and Uniqueness of the Cournot Equilibrium , 1977 .
[4] Dave Furth,et al. The stability of generalised stackelberg equilibria in heterogeneous oligopoly , 1979 .
[5] W. Novshek. Finding All n-Firm Cournot Equilibria , 1984 .
[6] Hiroshi Ohta,et al. Related Market Conditions and Interindustrial Mergers , 1976 .
[7] Ferenc Szidarovszky,et al. Contributions to Cournot oligopoly theory , 1982 .
[8] Koji Okuguchi,et al. The stability of price adjusting oligopoly with conjectural variations , 1978 .
[9] Hanif D. Sherali,et al. A mathematical programming approach for determining oligopolistic market equilibrium , 1982, Math. Program..
[10] James W. Friedman,et al. Oligopoly and the theory of games , 1977 .
[11] Hanif D. Sherali,et al. A Mathematical Programming Approach to a Nash-Cournot Equilibrium Analysis for a Two-Stage Network of Oligopolies , 1988, Oper. Res..
[12] Hanif D. Sherali,et al. Stackelberg-Nash-Cournot Equilibria: Characterizations and Computations , 1983, Oper. Res..
[13] Hanif D. Sherali,et al. A Multiple Leader Stackelberg Model and Analysis , 1984, Oper. Res..
[14] M. Perry,et al. Related Market Conditions and Interindustrial Mergers: Comment , 1978 .
[15] Augustin M. Cournot. Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.
[16] Joanna M. Leleno. A mathematical programming-based analysis of a two stage model of interacting producers , 1987 .
[17] Christine A. Shoemaker,et al. Determining Optimal Use of Resources among Regional Producers under Differing Levels of Cooperation , 1980, Oper. Res..
[18] Koji Okuguchi,et al. Expectations and stability in oligopoly models , 1976 .
[19] H. Stackelberg,et al. Marktform und Gleichgewicht , 1935 .