A survey of physics and dosimetry practice of permanent prostate brachytherapy in the United States.

PURPOSE To obtain data with regard to current physics and dosimetry practice in transperineal interstitial permanent prostate brachytherapy (TIPPB) in the U.S. by conducting a survey of institutions performing this procedure with the greatest frequency. METHODS AND MATERIALS Seventy brachytherapists with the greatest volume of TIPPB cases in 1995 in the U.S. were surveyed. The four-page comprehensive questionnaire included questions on both clinical and physics and dosimetry practice. Individuals not responding initially were sent additional mailings and telephoned. Physics and dosimetry practice summary statistics are reported. Clinical practice data is reported separately. RESULTS Thirty-five (50%) surveys were returned. Participants included 29 (83%) from the private sector and 6 (17%) from academic programs. Among responding clinicians, 125I (89%) is used with greater frequency than 103Pd (83%). Many use both (71%). Most brachytherapists perform preplans (86%), predominately employing ultrasound imaging (85%). Commercial treatment planning systems are used more frequently (75%) than in-house systems (25%). Preplans take 2.5 h (avg.) to perform and are most commonly performed by a physicist (69%). A wide range of apparent activities (mCi) is used for both 125I (0.16-1.00, avg. 0.41) and 103Pd (0.50-1.90, avg. 1.32). Of those assaying sources (71%), the range in number assayed (1 to all) and maximum accepted difference from vendor stated activity (2-20%) varies greatly. Most respondents feel that the manufacturers criteria for source activity are sufficiently stringent (88%); however, some report that vendors do not always meet their criteria (44%). Most postimplant dosimetry imaging occurs on day 1 (41%) and consists of conventional x-rays (83%), CT (63%), or both (46%). Postimplant dosimetry is usually performed by a physicist (72%), taking 2 h (avg.) to complete. Calculational formalisms and parameters vary substantially. At the time of the survey, few institutions have adopted AAPM TG-43 recommendations (21%). Only half (50%) of those not using TG-43 indicated an intent to do so in the future. Calculated doses at 1 cm from a single 1 mCi apparent activity source permanently implanted varied significantly. For 125I, doses calculated ranged from 13.08-40.00 Gy and for 103Pd, from 3.10 to 8.70 Gy. CONCLUSION While several areas of current physics and dosimetry practice are consistent among institutions, treatment planning and dose calculation techniques vary considerably. These data demonstrate a relative lack of consensus with regard to these practices. Furthermore, the wide variety of calculational techniques and benchmark data lead to calculated doses which vary by clinically significant amounts. It is apparent that the lack of standardization with regard to treatment planning and dose calculation practice in TIPPB must be addressed prior to performing any meaningful comparison of clinical results between institutions.

[1]  S Nag,et al.  Transperineal palladium 103 prostate brachytherapy: analysis of morbidity and seed migration. , 1995, Urology.

[2]  P. Unger,et al.  Prostate specific antigen findings and biopsy results following interactive ultrasound guided transperineal brachytherapy for early stage prostate carcinoma , 1996, Cancer.

[3]  K. Wallner,et al.  103Pd brachytherapy and external beam irradiation for clinically localized, high-risk prostatic carcinoma. , 1996, International journal of radiation oncology, biology, physics.

[4]  J Roy,et al.  Treatment-related symptoms during the first year following transperineal 125I prostate implantation. , 1994, International journal of radiation oncology, biology, physics.

[5]  R. Stock,et al.  Sexual potency following interactive ultrasound-guided brachytherapy for prostate cancer. , 1996, International journal of radiation oncology, biology, physics.

[6]  J. Blasko,et al.  Posttreatment biopsy results following interstitial brachytherapy in early-stage prostate cancer. , 1997, International journal of radiation oncology, biology, physics.

[7]  H. Holm,et al.  Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. , 1983, The Journal of urology.

[8]  J. Roy,et al.  Short-term freedom from disease progression after I-125 prostate implantation. , 1994, International journal of radiation oncology, biology, physics.

[9]  Blasko,et al.  Brachytherapy and Organ Preservation in the Management of Carcinoma of the Prostate. , 1993, Seminars in radiation oncology.

[10]  J. Blasko,et al.  Prostate specific antigen based disease control following ultrasound guided 125iodine implantation for stage T1/T2 prostatic carcinoma. , 1995, The Journal of urology.

[11]  L. Anderson,et al.  Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43 , 1995 .

[12]  J Roy,et al.  Tumor control and morbidity following transperineal iodine 125 implantation for stage T1/T2 prostatic carcinoma. , 1996, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  F. Shamsa,et al.  Regarding, Dattoli, Wallner, Sorace, Koval, Cash, Acosta, Brown, Etheridge, Binder, Brunelle, Kirwan, Sanchez, Stein, and Wasserman IJROBP 35(5):875-879; 1996. , 1997, International journal of radiation oncology, biology, physics.

[14]  B. Prestidge,et al.  Clinical impact of implementing the recommendations of AAPM Task Group 43 on permanent prostate brachytherapy using 125I. American Association of Physicists in Medicine. , 1998, International journal of radiation oncology, biology, physics.