Spaceborne visible and thermal infrared lithologic mapping of impact‐exposed subsurface lithologies at the Haughton impact structure, Devon Island, Canadian High Arctic: Applications to Mars
暂无分享,去创建一个
Pascal Lee | Gordon R. Osinski | Livio L. Tornabene | Jeffrey Edward Moersch | S. Wright | J. Moersch | L. Tornabene | G. Osinski | Pascal Lee | Shawn P. Wright
[1] Kevin R. Housen,et al. Some recent advances in the scaling of impact and explosion cratering , 1987 .
[2] Carle M. Pieters,et al. Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle , 1997 .
[3] Harry Y. McSween,et al. Identification of quartzofeldspathic materials on Mars , 2004 .
[4] Jeffrey R. Johnson,et al. Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .
[5] J. Garvin,et al. Characteristics of large terrestrial impact structures as revealed by remote sensing studies. , 1992 .
[6] Z. Hajnal,et al. Reflection study of the Haughton impact crater , 1988 .
[7] E. Fischer,et al. A Sharper View of Impact Craters from Clementine Data , 1994, Science.
[8] M. Malin,et al. Sedimentary rocks of early Mars. , 2000, Science.
[9] S. Drury. Image interpretation in Geology. 3rd edition , 2001 .
[10] P. Robertson,et al. Shatter cones from Haughton Dome, Devon Island, Canada , 1975, Nature.
[11] R. Grieve,et al. Observations at terrestrial impact structures: Their utility in constraining crater formation , 2004 .
[12] Harry Y. McSween,et al. Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.
[13] V. Hamilton,et al. Evidence for extensive, olivine-rich bedrock on Mars , 2005 .
[14] U. Mayr,et al. The sedimentary rocks of Devon island, canadian arctic archipelago , 1987 .
[15] Darrel L. Williams,et al. The Landsat 7 mission: terrestrial research and applications for the 21st century , 2001 .
[16] H. Melosh. Impact Cratering: A Geologic Process , 1986 .
[17] W. Reimold,et al. Impact tectonics in the core of the Vredefort dome, South Africa: Implications for central uplift formation in very large impact structures , 2003 .
[18] Joshua L. Bandfield,et al. A Global View of Martian Surface Compositions from MGS-TES , 2000 .
[19] Jeffrey R. Johnson,et al. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars , 2003 .
[20] R. Clark,et al. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .
[21] M. Abrams. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .
[22] Pascal Lee,et al. Impact‐induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis , 2001 .
[23] P. Christensen,et al. Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .
[24] C. Pieters,et al. Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.
[25] J. Boardman,et al. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .
[26] D. Rogers,et al. Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere , 2003 .
[27] G. Osinski,et al. Intra‐crater sedimentary deposits at the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .
[28] Jeffrey R. Johnson,et al. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars , 2003 .
[29] E. Jessberger. 40Ar-39Ar Dating of the Haughton Impact Structure , 1988 .
[30] Alan R. Gillespie,et al. Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques , 1987 .
[31] L. Bischoff,et al. The Surface Structure of the Haughton Impact Crater, Devon Island, Canada , 1988 .
[32] D. A. Howard,et al. A thermal emission spectral library of rock-forming minerals , 2000 .
[33] A. Knoll,et al. The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.
[34] P. Chavez. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .
[35] M. Ramsey,et al. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .
[36] D. L. Anderson,et al. Thermal emission spectrometer experiment: Mars Observer mission , 1992 .
[37] M. Malin,et al. Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra , 2002 .
[38] A. McEwen,et al. Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.
[39] P. Christensen,et al. Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .
[40] Kris J. Becker,et al. Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars , 2002 .
[41] Harry Y. McSween,et al. The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter , 1999 .
[42] L. Rowan,et al. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .
[43] M. Mellon,et al. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .
[44] Jeffrey Edward Moersch,et al. Thermal emission from particulate surfaces : a comparison of scattering models with measured spectra , 1995 .
[45] J. Spray,et al. Impactites of the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .
[46] K. Holsapple,et al. Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .
[47] Richard V. Morris,et al. Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .
[48] Charles S. Cockell,et al. Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .
[49] J. Mustard,et al. Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .
[50] Z. Hajnal,et al. Seismic Signature of the Haughton Structure , 1988 .
[51] Carle M. Pieters,et al. Bullialdus: Strengthening the case for lunar plutons , 1991 .
[52] M. Ramsey. Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end‐member deconvolution for spaceborne thermal infrared data of Earth and Mars , 2002 .
[53] D. Stöffler,et al. The Allochthonous Polymict Breccia Layer of the Haughton Impact Crater, Devon Island, Canada , 1988 .
[54] S. Ruff,et al. Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .
[55] Paul G. Lucey,et al. Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite , 2002 .
[56] M. Malin,et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .
[57] T. Frisch,et al. Haughton Astrobleme: A Mid-Cenozoic Impact Crater Devon Island, Canadian Arctic Archipelago , 1978 .
[58] P. Switzer,et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .
[59] T. Encrenaz,et al. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.
[60] John Parnell,et al. A case study of impact‐induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .
[61] L. Hickey,et al. The Stratigraphy, Sedimentology, and Fossils of the Haughton Formation: A Post-Impact Crater-Fill, Devon Island, N.W.T., Canada , 1988 .
[62] Patrick L. Thompson,et al. CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter) , 2004, SPIE Asia-Pacific Remote Sensing.
[63] J. Thomson,et al. The mid-infrared reflectance of mineral mixtures (7-14 microns) , 1993 .
[64] Simon J. Hook,et al. Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .
[65] R. Clark,et al. Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.
[66] Fred A. Kruse,et al. The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .
[67] Gordon R. Osinski,et al. Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .
[68] R. E. Walker,et al. Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .
[69] M. Ramsey,et al. Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System , 2006 .
[70] R. Clark,et al. Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.