Spaceborne visible and thermal infrared lithologic mapping of impact‐exposed subsurface lithologies at the Haughton impact structure, Devon Island, Canadian High Arctic: Applications to Mars

This study serves as a proof-of-concept for the technique of using visible-near infrared (VNIR), short-wavelength infrared (SWIR), and thermal infrared (TIR) spectroscopic observations to map impact-exposed subsurface lithologies and stratigraphy on Earth or Mars. The topmost layer, three subsurface layers and undisturbed outcrops of the target sequence exposed just 10 km to the northeast of the 23 km diameter Haughton impact structure (Devon Island, Nunavut, Canada) were mapped as distinct spectral units using Landsat 7 ETM+ (VNIR/SWIR) and ASTER (VNIR/SWIR/ TIR) multispectral images. Spectral mapping was accomplished by using standard image contrast- stretching algorithms. Both spectral matching and deconvolution algorithms were applied to image- derived ASTER TIR emissivity spectra using spectra from a library of laboratory-measured spectra of minerals (Arizona State University) and whole-rocks (Ward's). These identifications were made without the use of a priori knowledge from the field (i.e., a "blind" analysis). The results from this analysis suggest a sequence of dolomitic rock (in the crater rim), limestone (wall), gypsum-rich carbonate (floor), and limestone again (central uplift). These matched compositions agree with the lithologic units and the pre-impact stratigraphic sequence as mapped during recent field studies of the Haughton impact structure by Osinski et al. (2005a). Further conformation of the identity of image- derived spectra was confirmed by matching these spectra with laboratory-measured spectra of samples collected from Haughton. The results from the "blind" remote sensing methods used here suggest that these techniques can also be used to understand subsurface lithologies on Mars, where ground truth knowledge may not be generally available.

[1]  Kevin R. Housen,et al.  Some recent advances in the scaling of impact and explosion cratering , 1987 .

[2]  Carle M. Pieters,et al.  Mineralogy of the Mafic Anomaly in the South Pole‐Aitken Basin: Implications for excavation of the lunar mantle , 1997 .

[3]  Harry Y. McSween,et al.  Identification of quartzofeldspathic materials on Mars , 2004 .

[4]  Jeffrey R. Johnson,et al.  Dust coatings on basaltic rocks and implications for thermal infrared spectroscopy of Mars , 2002 .

[5]  J. Garvin,et al.  Characteristics of large terrestrial impact structures as revealed by remote sensing studies. , 1992 .

[6]  Z. Hajnal,et al.  Reflection study of the Haughton impact crater , 1988 .

[7]  E. Fischer,et al.  A Sharper View of Impact Craters from Clementine Data , 1994, Science.

[8]  M. Malin,et al.  Sedimentary rocks of early Mars. , 2000, Science.

[9]  S. Drury Image interpretation in Geology. 3rd edition , 2001 .

[10]  P. Robertson,et al.  Shatter cones from Haughton Dome, Devon Island, Canada , 1975, Nature.

[11]  R. Grieve,et al.  Observations at terrestrial impact structures: Their utility in constraining crater formation , 2004 .

[12]  Harry Y. McSween,et al.  Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars , 2002, Nature.

[13]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[14]  U. Mayr,et al.  The sedimentary rocks of Devon island, canadian arctic archipelago , 1987 .

[15]  Darrel L. Williams,et al.  The Landsat 7 mission: terrestrial research and applications for the 21st century , 2001 .

[16]  H. Melosh Impact Cratering: A Geologic Process , 1986 .

[17]  W. Reimold,et al.  Impact tectonics in the core of the Vredefort dome, South Africa: Implications for central uplift formation in very large impact structures , 2003 .

[18]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[19]  Jeffrey R. Johnson,et al.  Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars , 2003 .

[20]  R. Clark,et al.  Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data , 2000 .

[21]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[22]  Pascal Lee,et al.  Impact‐induced hydrothermal activity within the Haughton impact structure, arctic Canada: Generation of a transient, warm, wet oasis , 2001 .

[23]  P. Christensen,et al.  Searching for the source regions of martian meteorites using MGS TES: Integrating martian meteorites into the global distribution of igneous materials on Mars , 2003 .

[24]  C. Pieters,et al.  Copernicus Crater Central Peak: Lunar Mountain of Unique Composition , 1982, Science.

[25]  J. Boardman,et al.  Mapping target signatures via partial unmixing of AVIRIS data: in Summaries , 1995 .

[26]  D. Rogers,et al.  Age relationship of basaltic and andesitic surface compositions on Mars: Analysis of high-resolution TES observations of the northern hemisphere , 2003 .

[27]  G. Osinski,et al.  Intra‐crater sedimentary deposits at the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[28]  Jeffrey R. Johnson,et al.  Visible/near-infrared spectra of experimentally shocked plagioclase feldspars , 2003 .

[29]  E. Jessberger 40Ar-39Ar Dating of the Haughton Impact Structure , 1988 .

[30]  Alan R. Gillespie,et al.  Color enhancement of highly correlated images. II. Channel ratio and “chromaticity” transformation techniques , 1987 .

[31]  L. Bischoff,et al.  The Surface Structure of the Haughton Impact Crater, Devon Island, Canada , 1988 .

[32]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[33]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[34]  P. Chavez An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data , 1988 .

[35]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[36]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[37]  M. Malin,et al.  Martian sedimentary rock stratigraphy: Outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra , 2002 .

[38]  A. McEwen,et al.  Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results , 2003, Science.

[39]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[40]  Kris J. Becker,et al.  Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars , 2002 .

[41]  Harry Y. McSween,et al.  The Thermal Emission Imaging System (THEMIS) Instrument for the Mars 2001 Orbiter , 1999 .

[42]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[43]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[44]  Jeffrey Edward Moersch,et al.  Thermal emission from particulate surfaces : a comparison of scattering models with measured spectra , 1995 .

[45]  J. Spray,et al.  Impactites of the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[46]  K. Holsapple,et al.  Crater ejecta scaling laws - Fundamental forms based on dimensional analysis , 1983 .

[47]  Richard V. Morris,et al.  Global mapping of Martian hematite mineral deposits: Remnants of water‐driven processes on early Mars , 2001 .

[48]  Charles S. Cockell,et al.  Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[49]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[50]  Z. Hajnal,et al.  Seismic Signature of the Haughton Structure , 1988 .

[51]  Carle M. Pieters,et al.  Bullialdus: Strengthening the case for lunar plutons , 1991 .

[52]  M. Ramsey Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end‐member deconvolution for spaceborne thermal infrared data of Earth and Mars , 2002 .

[53]  D. Stöffler,et al.  The Allochthonous Polymict Breccia Layer of the Haughton Impact Crater, Devon Island, Canada , 1988 .

[54]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[55]  Paul G. Lucey,et al.  Thermal Infrared Spectroscopy of Experimentally Shocked Anorthosite and Pyroxenite , 2002 .

[56]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[57]  T. Frisch,et al.  Haughton Astrobleme: A Mid-Cenozoic Impact Crater Devon Island, Canadian Arctic Archipelago , 1978 .

[58]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[59]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[60]  John Parnell,et al.  A case study of impact‐induced hydrothermal activity: The Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[61]  L. Hickey,et al.  The Stratigraphy, Sedimentology, and Fossils of the Haughton Formation: A Post-Impact Crater-Fill, Devon Island, N.W.T., Canada , 1988 .

[62]  Patrick L. Thompson,et al.  CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance Orbiter) , 2004, SPIE Asia-Pacific Remote Sensing.

[63]  J. Thomson,et al.  The mid-infrared reflectance of mineral mixtures (7-14 microns) , 1993 .

[64]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[65]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[66]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[67]  Gordon R. Osinski,et al.  Tectonics of complex crater formation as revealed by the Haughton impact structure, Devon Island, Canadian High Arctic , 2005 .

[68]  R. E. Walker,et al.  Color enhancement of highly correlated images. I - Decorrelation and HSI contrast stretches. [hue saturation intensity , 1986 .

[69]  M. Ramsey,et al.  Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System , 2006 .

[70]  R. Clark,et al.  Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.