Contour based visualization of vessel movement predictions

We present a visualization method for the interactive exploration of predicted positions of moving objects, in particular, ocean-faring vessels. Two simple prediction models, one based on similarity to historical trajectories and one on Monte Carlo simulation, are presented. The prediction models generate temporal probability density fields starting from a known situation. We use contours to visualize spatio-temporal zones of these density fields. Predictions are split into a configurable number of segments for which we render one or more contours. Users, investigating and exploring the possible development of a situation, can see where a vessel will be in the near future according to a given prediction model. Through a number of real-world use cases and a discussion with users, we show our methods can be used in monitoring traffic for collision avoidance, and detecting illegal activities, like piracy or smuggling. By applying our methods to pedestrian movements, we show that our methods can also be applied to a different domain.

[1]  Lisa Rehak,et al.  Improving the maritime surface picture with a visualization aid to provide rapid situation awareness of information uncertainty , 2009, 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH).

[2]  Teun Hendriks,et al.  METIS: Dependable Cooperative Systems for Public Safety , 2013, CSER.

[3]  Gennady L. Andrienko,et al.  Composite Density Maps for Multivariate Trajectories , 2011, IEEE Transactions on Visualization and Computer Graphics.

[4]  Adrian Rusu,et al.  Overview and flight-by-flight analysis of trajectory prediction systems using a 2D Galaxy Visualization , 2009, 2009 IEEE/AIAA 28th Digital Avionics Systems Conference.

[5]  Kirsi Virrantaus,et al.  Space–time density of trajectories: exploring spatio-temporal patterns in movement data , 2010, Int. J. Geogr. Inf. Sci..

[6]  Willem Robert van Hage,et al.  Comparing Vessel Trajectories Using Geographical Domain Knowledge and Alignments , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[7]  Tobias Isenberg,et al.  Depth-Dependent Halos: Illustrative Rendering of Dense Line Data , 2009, IEEE Transactions on Visualization and Computer Graphics.

[8]  Bart Kranstauber,et al.  A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. , 2012, The Journal of animal ecology.

[9]  Andrew Mercer,et al.  Noodles: A Tool for Visualization of Numerical Weather Model Ensemble Uncertainty , 2010, IEEE Transactions on Visualization and Computer Graphics.

[10]  Denis Gouin,et al.  Visual analytics for maritime domain awareness , 2011, 2011 IEEE International Conference on Technologies for Homeland Security (HST).

[11]  Conrad Kickert,et al.  Evidence-based design: satellite positioning studies of city centre user groups , 2013 .

[12]  Kyuseok Shim,et al.  Fast Similarity Search in the Presence of Noise, Scaling, and Translation in Time-Series Databases , 1995, VLDB.

[13]  Stephen M. Krone,et al.  Analyzing animal movements using Brownian bridges. , 2007, Ecology.

[14]  Thomas Devogele,et al.  Spatio-temporal trajectory analysis of mobile objects following the same itinerary , 2010 .

[15]  Harvey J. Miller,et al.  Kinetic space-time prisms , 2011, GIS.

[16]  Stefan Wrobel,et al.  Visual analytics tools for analysis of movement data , 2007, SKDD.

[17]  Silvia Miksch,et al.  Semantic depth of field , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[18]  Jarke J. van Wijk,et al.  Interactive Density Maps for Moving Objects , 2012, IEEE Computer Graphics and Applications.

[19]  Arthur Appel,et al.  The haloed line effect for hidden line elimination. , 1979, SIGGRAPH '79.

[20]  Jarke J. van Wijk,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Visualization of Vessel Movements , 2022 .

[21]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[22]  Conversion and delivery of electrical energy in the 21st century , 2008, IEEE Power & Energy Society General Meeting.

[23]  Bettina Speckmann,et al.  Context-Aware Similarity of Trajectories , 2012, GIScience.

[24]  Dimitrios Gunopulos,et al.  Indexing multi-dimensional time-series with support for multiple distance measures , 2003, KDD '03.

[25]  Leonidas J. Guibas,et al.  Data-driven trajectory smoothing , 2011, GIS.

[26]  Tijs Neutens,et al.  Anchor uncertainty and space-time prisms on road networks , 2010, Int. J. Geogr. Inf. Sci..

[27]  Göran Falkman,et al.  Evaluating the Usability of Visualizations of Normal Behavioral Models for Analytical Reasoning , 2010, 2010 Seventh International Conference on Computer Graphics, Imaging and Visualization.

[28]  Tom Ziemke,et al.  Improving maritime anomaly detection and situation awareness through interactive visualization , 2008, 2008 11th International Conference on Information Fusion.

[29]  Robert Weibel,et al.  Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects , 2009, Comput. Environ. Urban Syst..

[30]  Véronique Malaisé,et al.  An integrated approach for visual analysis of a multisource moving objects knowledge base , 2010, Int. J. Geogr. Inf. Sci..

[31]  Colin Ware Designing with a 2 1/2-D Attitude , 2001 .