Correlated Excitonic Signatures in a Nanoscale van der Waals Antiferromagnet

Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS3 flakes to tens of nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.8 to 2.2 eV) transitions with charge-transfer character. These ultra-sharp lines (<120 ueV at 4.2 K) share the spin-correlated nature of the bulk exciton by displaying a Neel temperature dependent linear polarization. Furthermore, exciton photoluminescence lineshape analysis reveals a polaronic character via coupling with at-least 3 phonon modes and a comb-like Stark effect through discretization of charges in each layer. These findings augment the knowledge on the many-body nature of excitonic quasi-particles in correlated antiferromagnets and also establish the nanoscale platform as promising for maturing integrated magneto-optic devices.

[1]  D. Rocca,et al.  Anisotropic Excitons Reveal Local Spin Chain Directions in a van der Waals Antiferromagnet , 2023, Advanced materials.

[2]  T. Morimoto,et al.  Spin-polarized spatially indirect excitons in a topological insulator , 2023, Nature.

[3]  Kenji Watanabe,et al.  Robust Interlayer-Coherent Quantum Hall States in Twisted Bilayer Graphene. , 2022, Nano letters.

[4]  M. Kuwata-Gonokami,et al.  Observation of Bose-Einstein condensates of excitons in a bulk semiconductor , 2022, Nature Communications.

[5]  Hyun Ho Kim,et al.  The Magnetic Genome of Two-Dimensional van der Waals Materials , 2022, ACS nano.

[6]  B. Datta,et al.  Spin-correlated exciton–polaritons in a van der Waals magnet , 2022, Nature Nanotechnology.

[7]  N. Gedik,et al.  Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet , 2022, Nature communications.

[8]  Xiaoming Xie,et al.  Graphene nanoribbons for quantum electronics , 2021, Nature Reviews Physics.

[9]  S. Roche,et al.  Magnetism, symmetry and spin transport in van der Waals layered systems , 2021, Nature Reviews Physics.

[10]  N. Gedik,et al.  Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator , 2021, Nature Communications.

[11]  J. Shan,et al.  Strongly correlated excitonic insulator in atomic double layers , 2021, Nature.

[12]  Xiaodong Xu,et al.  Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator , 2021, Nature Nanotechnology.

[13]  F. Giustino,et al.  The 2021 quantum materials roadmap , 2020, Journal of Physics: Materials.

[14]  Jonghyeon Kim,et al.  Coherent many-body exciton in van der Waals antiferromagnet NiPS3 , 2020, Nature.

[15]  D. Smirnov,et al.  Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals , 2020, Nature Materials.

[16]  C. Lane,et al.  Thickness dependence of electronic structure and optical properties of a correlated van der Waals antiferromagnetic NiPS3 thin film , 2020, 2003.01614.

[17]  Hyun Ho Kim,et al.  Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3 , 2020, Nature Communications.

[18]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[19]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[20]  Y. Iwasa,et al.  Exciton Hall effect in monolayer MoS2. , 2017, Nature materials.

[21]  Cheol-Hwan Park,et al.  Charge-Spin Correlation in van der Waals Antiferromagnet NiPS_{3}. , 2017, Physical review letters.

[22]  F. Flicker,et al.  Signatures of exciton condensation in a transition metal dichalcogenide , 2016, Science.

[23]  P. Lagoudakis,et al.  Exciton-polariton condensates: Exciton-mediated superconductivity. , 2016, Nature materials.

[24]  T. J. Hicks,et al.  Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3 , 2015 .

[25]  C. Galland,et al.  Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots , 2011, Nature.

[26]  J. E. Moore,et al.  Exciton condensation and charge fractionalization in a topological insulator film. , 2009, Physical review letters.

[27]  R. Marcus,et al.  Universal emission intermittency in quantum dots, nanorods and nanowires , 2008, 0810.2509.

[28]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[29]  G Khitrova,et al.  Semiconductor excitons in new light , 2006, Nature materials.

[30]  E. Dagotto Complexity in Strongly Correlated Electronic Systems , 2005, Science.

[31]  Moungi G. Bawendi,et al.  Influence of Spectral Diffusion on the Line Shapes of Single CdSe Nanocrystallite Quantum Dots , 1999 .

[32]  E. Banda Optical absorption of NiPS3 in the near-infrared, visible and near-ultraviolet regions , 1986 .

[33]  W M Young,et al.  Monte Carlo studies of vacancy migration in binary ordered alloys: I , 1966 .

[34]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  Yury Gogotsi,et al.  The properties and applications of nanodiamonds. , 2011, Nature nanotechnology.