Convolutional Neural Networks for Spectroscopic Redshift Estimation on Euclid Data

In this paper, we address the problem of spectroscopic redshift estimation in Astronomy. Due to the expansion of the Universe, galaxies recede from each other on average. This movement causes the emitted electromagnetic waves to shift from the blue part of the spectrum to the red part, due to the Doppler effect. Redshift is one of the most important observables in Astronomy, allowing the measurement of galaxy distances. Several sources of noise render the estimation process far from trivial, especially in the low signal-to-noise regime of many astrophysical observations. In recent years, new approaches for a reliable and automated estimation methodology have been sought out, in order to minimize our reliance on currently popular techniques that heavily involve human intervention. The fulfilment of this task has evolved into a grave necessity, in conjunction with the insatiable generation of immense amounts of astronomical data. In our work, we introduce a novel approach based on Deep Convolutional Neural Networks. The proposed methodology is extensively evaluated on a spectroscopic dataset of full spectral energy galaxy distributions, modelled after the upcoming Euclid satellite galaxy survey. Experimental analysis on observations of idealistic and realistic conditions demonstrate the potent capabilities of the proposed scheme.

[1]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[2]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[3]  Edward J. Kim,et al.  Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.

[4]  Lawrence D. Jackel,et al.  Backpropagation Applied to Handwritten Zip Code Recognition , 1989, Neural Computation.

[5]  Iftach Sadeh,et al.  ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.

[6]  J.-L. Starck,et al.  Darth Fader: Using wavelets to obtain accurate redshifts of spectra at very low signal-to-noise , 2013, 1309.3579.

[7]  Jiangang Hao,et al.  ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.

[8]  Yoshua Bengio,et al.  Practical Recommendations for Gradient-Based Training of Deep Architectures , 2012, Neural Networks: Tricks of the Trade.

[9]  Panagiotis Tsakalides,et al.  Goal!! Event detection in sports video , 2017, Computer Vision Applications in Sports.

[10]  Gianfranco Bertone,et al.  Particle Dark Matter: List of contributors , 2010 .

[11]  S. Maddox,et al.  The cosmological constant and cold dark matter , 1990, Nature.

[12]  Santiago Velasco-Forero,et al.  Deep learning for studies of galaxy morphology , 2016, Astroinformatics.

[13]  Yann LeCun,et al.  Generalization and network design strategies , 1989 .

[14]  Michael J. Kurtz,et al.  RVSAO 2.0: Digital Redshifts and Radial Velocities , 1998, astro-ph/9803252.

[15]  Nikos Komodakis,et al.  Learning to compare image patches via convolutional neural networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Panagiotis Tsakalides,et al.  Denoising galaxy spectra with coupled dictionary learning , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[17]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[18]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[20]  Gui-Song Xia,et al.  Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery , 2015, Remote. Sens..

[21]  Brad E. Tucker,et al.  Convolutional neural networks for transient candidate vetting in large-scale surveys , 2017, 1708.08947.

[22]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[23]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[24]  Lorien Y. Pratt,et al.  Discriminability-Based Transfer between Neural Networks , 1992, NIPS.

[25]  C. Bonnett Using neural networks to estimate redshift distributions. An application to CFHTLenS , 2013, 1312.1287.

[26]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[27]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[28]  M. Schatz,et al.  Big Data: Astronomical or Genomical? , 2015, PLoS biology.

[29]  T. Kitching,et al.  The dark matter of gravitational lensing , 2010, 1001.1739.

[30]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[31]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[32]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .

[33]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[34]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[35]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[36]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[37]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[38]  H. K. HAltTLIn THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 2004 .

[39]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[40]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[41]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[42]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[43]  B. Póczos,et al.  CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding , 2017, Monthly Notices of the Royal Astronomical Society.

[44]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[45]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[46]  Tianqi Chen,et al.  Empirical Evaluation of Rectified Activations in Convolutional Network , 2015, ArXiv.

[47]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[48]  Graham W. Taylor,et al.  Deep Multimodal Learning: A Survey on Recent Advances and Trends , 2017, IEEE Signal Processing Magazine.

[49]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[50]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[51]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Panagiotis Tsakalides,et al.  Deep Convolutional Neural Networks for the Classification of Snapshot Mosaic Hyperspectral Imagery , 2017, Computational Imaging.

[53]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[54]  C. G. Tinney,et al.  Observed Properties of Exoplanets : Masses, Orbits, and Metallicities(Origins : From Early Universe to Extrasolar Planets) , 2005 .

[55]  A. Aniyan,et al.  Classifying Radio Galaxies with the Convolutional Neural Network , 2017, 1705.03413.

[56]  Sepp Hochreiter,et al.  The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[57]  E. Decenciere,et al.  Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.

[58]  N. R. Napolitano,et al.  Finding strong gravitational lenses in the Kilo Degree Survey with Convolutional Neural Networks , 2017, 1702.07675.

[59]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[60]  Karl Glazebrook,et al.  Automatic Redshift Determination by Use of Principal Component Analysis. I. Fundamentals , 1998 .

[61]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[62]  Shinji Tsujikawa,et al.  Dynamics of dark energy , 2006 .