Implementation of Shock Filter for Digital X-Ray Image Processing

X-ray image might be corrupted by noise or blurring because of signal transmission or the bad X- ray lens. This paper presents a two-stage shock filter based on Partial Differential Equations (PDE) to restore noisy blurred X-ray image. Shock filters are popular morphological methods. They are used for noise removal, edge enhancement and image segmentation. Our experimental results show that the performances of shock filter are excellent in X-ray image. The peak signal-to-noise ratio (PSNR) values are 38 dB at least in restoring the noisy X-ray image. The sharpness of image’s edges increase in enhancing the blurred X-ray image. Furthermore, this paper proposes a VLSI architecture for accelerating the high-definition (HD) X-ray image (944 p) process. This paper implements the architecture in FPGA. The hardware cost is low because the computation of shock filter is low complex. To achieve the real-time processing specification, this paper uses a 5-series shock filter architecture to implement computation of HD X-ray image. This paper demonstrates a 944 p, 43.1-fps solution on 100 MHz with 133 k gate counts in Design Compiler, and with 2904 logic elements in FPGA.

[1]  Antoine Vacavant,et al.  Fast smoothed shock filtering , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[2]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[3]  Davide De Caro,et al.  New design of squarer circuits using Booth encoding and folding techniques , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[4]  Rachid Deriche,et al.  Diffusion PDEs on vector-valued images , 2002, IEEE Signal Process. Mag..

[5]  Joachim Weickert,et al.  Theoretical foundations for spatially discrete 1-D shock filtering , 2007, Image Vis. Comput..

[6]  Yehoshua Y. Zeevi,et al.  Regularized Shock Filters and Complex Diffusion , 2002, ECCV.

[7]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[8]  R. Deriche,et al.  Les EDP en traitement des images et vision par ordinateur , 1995 .

[9]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .