A concept of heat dissipation coefficient for thermal cloak based on entropy generation approach

In this paper, we design a 3D spherical thermal cloak with eight material layers based on transformation thermodynamics and it worked at steady state before approaching ‘static limit’. Different from the present research, we introduce local entropy generation to present the randomness in the cloaking system and propose the concept of a heat dissipation coefficient which is used to describe the capacity of heat diffusion in the ‘cloaking’ and ‘protected’ region to characterize the cloaking performance on the basis of non-equilibrium thermodynamics. We indicate the ability of heat dissipation for the thermal cloak responds to changes in anisotropy (caused by the change in the number of layers) and differential temperatures. In addition, we obtain a comparison of results of different cloaks and believe that the concept of a heat dissipation coefficient can be an evaluation criterion for the thermal cloak.

[1]  Baowen Li,et al.  Experimental demonstration of a bilayer thermal cloak. , 2014, Physical review letters.

[2]  Tianzhi Yang,et al.  Experimental evidence for the bending of heat flux in a thermal metamaterial , 2014 .

[3]  Fedor Gömöry,et al.  Experimental Realization of a Magnetic Cloak , 2012, Science.

[4]  Heinz Herwig,et al.  Turbulent flow and heat transfer in channels with shark skin surfaces: Entropy generation and its physical significance , 2014 .

[5]  Krishna P. Vemuri,et al.  Estimating interfacial thermal conductivity in metamaterials through heat flux mapping , 2015 .

[6]  Fei Gao,et al.  Ultrathin three-dimensional thermal cloak. , 2014, Physical review letters.

[7]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[8]  Tungyang Chen,et al.  Materials with constant anisotropic conductivity as a thermal cloak or concentrator , 2015 .

[9]  D. Werner,et al.  Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions , 2008 .

[10]  Yuki Sato,et al.  Heat flux manipulation with engineered thermal materials. , 2012, Physical review letters.

[11]  Cheng-Wei Qiu,et al.  Homogeneous Thermal Cloak with Constant Conductivity and Tunable Heat Localization , 2013, Scientific Reports.

[12]  David R. Smith,et al.  A full-parameter unidirectional metamaterial cloak for microwaves. , 2013, Nature materials.

[13]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[14]  Ole Sigmund,et al.  Towards all-dielectric, polarization-independent optical cloaks , 2012 .

[15]  Martin Wegener,et al.  Pentamode metamaterials with independently tailored bulk modulus and mass density , 2014, 1407.4894.

[16]  Wei Jiang,et al.  A transient thermal cloak experimentally realized through a rescaled diffusion equation with anisotropic thermal diffusivity , 2013 .

[17]  Yuki Sato,et al.  Transient heat flux shielding using thermal metamaterials , 2013, 1305.3197.

[18]  Linzhi Wu Cylindrical Thermal Cloak Based on the Path Design of Heat Flux , 2015 .

[19]  Jiping Huang,et al.  Shaped graded materials with an apparent negative thermal conductivity , 2008 .

[20]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[21]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[22]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[23]  M. Wegener,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[24]  N. Engheta,et al.  Multifrequency optical invisibility cloak with layered plasmonic shells. , 2008, Physical review letters.

[25]  Ole Sigmund,et al.  Topology optimized low-contrast all-dielectric optical cloak , 2011 .

[26]  Krishna P. Vemuri,et al.  Geometrical considerations in the control and manipulation of conductive heat flux in multilayered thermal metamaterials , 2013 .

[27]  M. Wegener,et al.  Experiments on transformation thermodynamics: molding the flow of heat. , 2012, Physical review letters.

[28]  Jiping Huang,et al.  A bifunctional cloak using transformation media , 2010 .

[29]  Claude Amra,et al.  Anisotropic conductivity rotates heat fluxes in transient regimes. , 2013, Optics express.