Activation by locus control regions?

[1]  B. Emerson,et al.  A SWI/SNF–Related Chromatin Remodeling Complex, E-RC1, Is Required for Tissue-Specific Transcriptional Regulation by EKLF In Vitro , 1998, Cell.

[2]  M. Groudine,et al.  The Locus Control Region Is Necessary for Gene Expression in the Human β-Globin Locus but Not the Maintenance of an Open Chromatin Structure in Erythroid Cells , 1998, Molecular and Cellular Biology.

[3]  M. Groudine,et al.  The β-Globin LCR Is Not Necessary for an Open Chromatin Structure or Developmentally Regulated Transcription of the Native Mouse β-Globin Locus , 1998 .

[4]  G. Felsenfeld,et al.  Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. , 1998, Genes & development.

[5]  F. Grosveld,et al.  Altered DNA-binding specificity mutants of EKLF and Sp1 show that EKLF is an activator of the beta-globin locus control region in vivo. , 1998, Genes & development.

[6]  R. Paro,et al.  The Drosophila Fab-7 Chromosomal Element Conveys Epigenetic Inheritance during Mitosis and Meiosis , 1998, Cell.

[7]  J. Strouboulis,et al.  The effect of distance on long-range chromatin interactions. , 1997, Molecular cell.

[8]  D. Kioussis,et al.  Locus control regions: overcoming heterochromatin-induced gene inactivation in mammals. , 1997, Current opinion in genetics & development.

[9]  H. Ashe,et al.  Intergenic transcription and transinduction of the human beta-globin locus. , 1997, Genes & development.

[10]  R. Jaenisch DNA methylation and imprinting: why bother? , 1997, Trends in genetics : TIG.

[11]  F. Grosveld,et al.  The role of EKLF in human beta-globin gene competition. , 1996, Genes & development.

[12]  E. Whitelaw,et al.  The vagaries of variegating transgenes. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[13]  J. Strouboulis,et al.  Heterochromatin Effects on the Frequency and Duration of LCR-Mediated Gene Transcription , 1996, Cell.

[14]  M. Groudine,et al.  Regulation of β-globin gene expression: straightening out the locus , 1996 .

[15]  T. Ley,et al.  Analysis of mice containing a targeted deletion of beta-globin locus control region 5' hypersensitive site 3 , 1996, Molecular and cellular biology.

[16]  F. Grosveld,et al.  Position effects and genetic disease. , 1996, Trends in genetics : TIG.

[17]  D. Kioussis,et al.  Locus Control Region Function and Heterochromatin-Induced Position Effect Variegation , 1996, Science.

[18]  J. D. Engel,et al.  Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. , 1995, Genes & development.

[19]  T. Ley,et al.  Targeted deletion of 5'HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. , 1995, Genes & development.

[20]  A. E. Sippel,et al.  Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice. , 1994, Nucleic acids research.

[21]  J. D. Engel Developmental regulation of human beta-globin gene transcription: a switch of loyalties? , 1993, Trends in genetics : TIG.

[22]  J. Bieker,et al.  A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins , 1993, Molecular and cellular biology.

[23]  Paul Schedl,et al.  A position-effect assay for boundaries of higher order chromosomal domains , 1991, Cell.

[24]  W. C. Forrester,et al.  A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. , 1990, Genes & development.

[25]  B. Alter,et al.  Gamma delta beta-thalassemia due to a de novo mutation deleting the 5' beta-globin gene activation-region hypersensitive sites. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Vidal,et al.  High-level, erythroid-specific expression of the human alpha-globin gene in transgenic mice and the production of human hemoglobin in murine erythrocytes. , 1989, Genes & development.

[27]  D. Kioussis,et al.  Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice , 1989, Cell.

[28]  J. Locke,et al.  Dosage-dependent modifiers of position effect variegation in Drosophila and a mass action model that explains their effect. , 1988, Genetics.

[29]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[30]  F. Costantini,et al.  A 3' enhancer contributes to the stage-specific expression of the human beta-globin gene. , 1987, Genes & development.

[31]  R. Palmiter,et al.  Two 3' sequences direct adult erythroid-specific expression of human beta-globin genes in transgenic mice. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Kollias,et al.  Regulated expression of human A γ-, β-, and hybrid γβ-globin genes in transgenic mice: Manipulation of the developmental expression patterns , 1986, Cell.

[33]  James T. Elder,et al.  A developmentally stable chromatin structure in the human beta-globin gene cluster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Y. Kan,et al.  A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. , 1985, The Journal of clinical investigation.

[35]  J. Lingrel,et al.  Erythroid‐specific expression of human beta‐globin genes in transgenic mice. , 1985, The EMBO journal.

[36]  F. Costantini,et al.  Developmental regulation of a cloned adult β-globin gene in transgenic mice , 1985, Nature.

[37]  F. Grosveld,et al.  DNA sequences required for regulated expression of beta-globin genes in murine erythroleukaemia cells. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  F. Grosveld,et al.  DNA sequences required for regulated expression of β-globin genes in murine erythroleukemia cells , 1984, Cell.

[39]  P. Sharp,et al.  The location of the genes coding for hexon and fiber proteins in adenovirus DNA , 1975, Cell.

[40]  Peter Fraser,et al.  Transcription complex stability and chromatin dynamics in vivo , 1995, Nature.

[41]  G. Stamatoyannopoulos,et al.  The molecular basis of blood diseases , 1987 .

[42]  D. Kioussis,et al.  β-Globin gene inactivation by DNA translocation in γβ-thalassaemi , 1983, Nature.