Structure learning in coupled dynamical systems and dynamic causal modelling

Identifying a coupled dynamical system out of many plausible candidates, each of which could serve as the underlying generator of some observed measurements, is a profoundly ill-posed problem that commonly arises when modelling real-world phenomena. In this review, we detail a set of statistical procedures for inferring the structure of nonlinear coupled dynamical systems (structure learning), which has proved useful in neuroscience research. A key focus here is the comparison of competing models of network architectures—and implicit coupling functions—in terms of their Bayesian model evidence. These methods are collectively referred to as dynamic causal modelling. We focus on a relatively new approach that is proving remarkably useful, namely Bayesian model reduction, which enables rapid evaluation and comparison of models that differ in their network architecture. We illustrate the usefulness of these techniques through modelling neurovascular coupling (cellular pathways linking neuronal and vascular systems), whose function is an active focus of research in neurobiology and the imaging of coupled neuronal systems. This article is part of the theme issue ‘Coupling functions: dynamical interaction mechanisms in the physical, biological and social sciences'.

[1]  Karl J. Friston,et al.  Generalised filtering and stochastic DCM for fMRI , 2011, NeuroImage.

[2]  James M Kilner,et al.  Event-related brain dynamics , 2002, Trends in Neurosciences.

[3]  Karl J. Friston,et al.  Dynamic causal modelling of seizure activity in a rat model , 2017, NeuroImage.

[4]  Karl J. Friston,et al.  Tracking slow modulations in synaptic gain using dynamic causal modelling: Validation in epilepsy , 2015, NeuroImage.

[5]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[6]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[7]  Klaas E. Stephan,et al.  Dynamic Causal Modeling and Its Application to Psychiatric Disorders , 2018 .

[8]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[9]  Karl J. Friston,et al.  Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise? , 2012, NeuroImage.

[10]  Karl J. Friston,et al.  Bilinear dynamical systems , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  S. Frangou,et al.  Dynamic causal modeling of load‐dependent modulation of effective connectivity within the verbal working memory network , 2014, Human brain mapping.

[12]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[13]  A. Lee Swindlehurst,et al.  Algorithms and Bounds for Dynamic Causal Modeling of Brain Connectivity , 2013, IEEE Transactions on Signal Processing.

[14]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[15]  Adeel Razi,et al.  Hierarchical Dynamic Causal Modeling of Resting-State fMRI Reveals Longitudinal Changes in Effective Connectivity in the Motor System after Thalamotomy for Essential Tremor , 2017, Front. Neurol..

[16]  Karl J. Friston,et al.  Towards a Neuronal Gauge Theory , 2016, PLoS biology.

[17]  Karl J. Friston,et al.  Free-energy and the brain , 2007, Synthese.

[18]  Karl J. Friston,et al.  A neural mass model for MEG/EEG: coupling and neuronal dynamics , 2003, NeuroImage.

[19]  Karl J. Friston,et al.  Dynamic causal modeling with neural fields , 2012, NeuroImage.

[20]  Karl J. Friston Variational filtering , 2008, NeuroImage.

[21]  Karl J. Friston,et al.  Altered intrinsic and extrinsic connectivity in schizophrenia , 2017, NeuroImage: Clinical.

[22]  Karl J. Friston,et al.  Dynamic causal modelling of distributed electromagnetic responses , 2009, NeuroImage.

[23]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[24]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[25]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[26]  Karl J. Friston,et al.  Bayesian model reduction , 2018, 1805.07092.

[27]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[28]  Olivier David,et al.  Comparison of two integration methods for dynamic causal modeling of electrophysiological data , 2018, NeuroImage.

[29]  Peter V. E. McClintock,et al.  A tutorial on time-evolving dynamical Bayesian inference , 2014 .

[30]  Karl J. Friston,et al.  Dynamic causal modelling of induced responses , 2008, NeuroImage.

[31]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[32]  Karl Friston et al. Statistical parametric mapping , 2013 .

[33]  Adeel Razi,et al.  Bayesian model reduction and empirical Bayes for group (DCM) studies , 2016, NeuroImage.

[34]  Karl J. Friston,et al.  NMDA-receptor antibodies alter cortical microcircuit dynamics , 2017, Proceedings of the National Academy of Sciences.

[35]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[36]  Karl J. Friston,et al.  Towards a Neuronal Gauge Theory , 2016, PLoS biology.

[37]  Sergio Bittanti Model Identification and Data Analysis , 2019 .

[38]  Karl J. Friston,et al.  A guide to group effective connectivity analysis, part 2: Second level analysis with PEB , 2019, NeuroImage.

[39]  Karl J. Friston,et al.  Neurovascular coupling: insights from multi-modal dynamic causal modelling of fMRI and MEG , 2019, 1903.07478.

[40]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[41]  Y. Lai,et al.  Data Based Identification and Prediction of Nonlinear and Complex Dynamical Systems , 2016, 1704.08764.

[42]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[43]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[44]  Karl J. Friston,et al.  DCM for complex-valued data: Cross-spectra, coherence and phase-delays , 2012, NeuroImage.

[45]  Gemma Lancaster,et al.  Surrogate data for hypothesis testing of physical systems , 2018, Physics Reports.

[46]  Karl J. Friston,et al.  Dynamic causal modeling of evoked responses in EEG and MEG , 2006, NeuroImage.

[47]  S Bestmann,et al.  Bayesian Model Selection Maps for Group Studies , 2009, NeuroImage.

[48]  Karl J. Friston,et al.  Dynamic Causal Models for phase coupling , 2009, Journal of Neuroscience Methods.

[49]  Adeel Razi,et al.  Dynamic causal modelling revisited , 2017, NeuroImage.

[50]  Rosalyn J. Moran,et al.  Aging into Perceptual Control: A Dynamic Causal Modeling for fMRI Study of Bistable Perception , 2016, Front. Hum. Neurosci..

[51]  Jürgen Kurths,et al.  Nonlinear Dynamical System Identification from Uncertain and Indirect Measurements , 2004, Int. J. Bifurc. Chaos.

[52]  Karl J. Friston,et al.  Action and behavior: a free-energy formulation , 2010, Biological Cybernetics.

[53]  Herry Rachmadyanto,et al.  UNESCO-IHE INSTITUTE FOR WATER EDUCATION , 2010 .

[54]  T. Davis,et al.  The Blood-Brain Barrier/Neurovascular Unit in Health and Disease , 2005, Pharmacological Reviews.

[55]  Karl J. Friston,et al.  Post hoc Bayesian model selection , 2011, NeuroImage.

[56]  Karl J. Friston,et al.  DEM: A variational treatment of dynamic systems , 2008, NeuroImage.

[57]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.

[58]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[59]  Karl J. Friston,et al.  Dynamic causal modelling for fMRI: A two-state model , 2008, NeuroImage.

[60]  Karl J. Friston,et al.  Calcium imaging and dynamic causal modelling reveal brain-wide changes in effective connectivity and synaptic dynamics during epileptic seizures , 2018, PLoS Comput. Biol..

[61]  Karl J. Friston,et al.  CHAPTER 2 – Statistical parametric mapping , 2007 .

[62]  F. Španiel,et al.  Theoretical Modeling of Cognitive Dysfunction in Schizophrenia by Means of Errors and Corresponding Brain Networks , 2018, Front. Psychol..

[63]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[64]  R. Woltjer,et al.  The Translational Significance of the Neurovascular Unit* , 2016, The Journal of Biological Chemistry.

[65]  Karl J. Friston,et al.  Network discovery with DCM , 2011, NeuroImage.