The neural origin of the priming distance effect: Distance‐dependent recovery of parietal activation using symbolic magnitudes

Numerical magnitudes are known to be processed in areas around the intraparietal sulci of the brain. We used an fMRI‐adaptation paradigm to investigate how they are actually coded at the neural level. In a number identification task, we manipulated the numerical distance between prime and target numbers (same, close, and far pairs) and their symbolic notation (Arabic and verbal numerals). We show that bilateral parietal activations present a distance‐dependent recovery of activation positively correlated with the distance between primes and targets: the larger the prime‐target distance, the higher the recovery of activation. Importantly, this effect is only present for trials where an Arabic numeral precedes a verbal numeral and not the reverse. Together, these findings reveal the neural origin of the behavioral priming distance effect and demonstrate that the relative importance of the semantic and nonsemantic pathways in a dual‐route model of number processing is modulated by symbolic notation. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.

[1]  Marc Brysbaert,et al.  Single-digit and two-digit Arabic numerals address the same semantic number line , 1999, Cognition.

[2]  Wim Fias,et al.  Priming reveals differential coding of symbolic and non-symbolic quantities , 2007, Cognition.

[3]  R. Cohen Kadosh,et al.  Numerical representation in the parietal lobes: abstract or not abstract? , 2009, The Behavioral and brain sciences.

[4]  Karl Zilles,et al.  The human parietal cortex: a novel approach to its architectonic mapping. , 2003, Advances in neurology.

[5]  G. Orban,et al.  Parietal Representation of Symbolic and Nonsymbolic Magnitude , 2003, Journal of Cognitive Neuroscience.

[6]  S. Dehaene,et al.  A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex , 2007, Neuron.

[7]  M Coltheart,et al.  DRC: a dual route cascaded model of visual word recognition and reading aloud. , 2001, Psychological review.

[8]  Timothy Edward John Behrens,et al.  Response-Selection-Related Parietal Activation during Number Comparison , 2004, Journal of Cognitive Neuroscience.

[9]  Soon Chun Siong,et al.  Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes , 2006, Brain Research.

[10]  S. Dehaene,et al.  Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing , 1999, Journal of Cognitive Neuroscience.

[11]  Avishai Henik,et al.  Notation-Dependent and -Independent Representations of Numbers in the Parietal Lobes , 2007, Neuron.

[12]  E. Miller,et al.  Coding of Cognitive Magnitude Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex , 2003, Neuron.

[13]  Valérie Dormal,et al.  Common and Specific Contributions of the Intraparietal Sulci to Numerosity and Length Processing , 2009, NeuroImage.

[14]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[15]  S. Dehaene,et al.  Number words and number non-words. A case of deep dyslexia extending to Arabic numerals. , 1994, Brain : a journal of neurology.

[16]  Marc Brysbaert,et al.  Number recognition in different formats , 2004 .

[17]  Marinella Cappelletti,et al.  Spared numerical abilities in a case of semantic dementia , 2001, Neuropsychologia.

[18]  A. Kleinschmidt,et al.  A Supramodal Number Representation in Human Intraparietal Cortex , 2003, Neuron.

[19]  Stanislas Dehaene,et al.  Development of Elementary Numerical Abilities: A Neuronal Model , 1993, Journal of Cognitive Neuroscience.

[20]  Stanislas Dehaene,et al.  Cerebral Pathways for Calculation: Double Dissociation between Rote Verbal and Quantitative Knowledge of Arithmetic , 1997, Cortex.

[21]  Stanislas Dehaene,et al.  Primed numbers : Exploring the modularity of numerical representations with masked and unmasked semantic priming , 1999 .

[22]  Daniel Ansari,et al.  Dissociating response conflict from numerical magnitude processing in the brain: An event-related fMRI study , 2006, NeuroImage.

[23]  K. Grill-Spector,et al.  fMR-adaptation: a tool for studying the functional properties of human cortical neurons. , 2001, Acta psychologica.

[24]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[25]  M. Brysbaert,et al.  Semantic priming in number naming , 2002, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[26]  S Dehaene,et al.  Attention, automaticity, and levels of representation in number processing. , 1995, Journal of experimental psychology. Learning, memory, and cognition.

[27]  S Dehaene,et al.  Number words and number non-words. A case of deep dyslexia extending to Arabic numerals. , 1994, Brain : a journal of neurology.

[28]  S. Petersen,et al.  Neuroimaging studies of word reading. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Michaël A. Stevens,et al.  A model of exact small-number representation , 2005, Psychonomic bulletin & review.

[30]  Takeshi Hatta,et al.  Semantic processing of Arabic, Kanji, and Kana numbers: Evidence from interference in physical and numerical size judgments , 2003, Memory & cognition.

[31]  S. Dehaene,et al.  THREE PARIETAL CIRCUITS FOR NUMBER PROCESSING , 2003, Cognitive neuropsychology.

[32]  M. Brysbaert,et al.  Are Arabic numerals processed as pictures in a Stroop interference task? , 2001, Psychological research.

[33]  D. LeBihan,et al.  Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task , 2001, NeuroImage.

[34]  Philippe Pinel,et al.  Tuning Curves for Approximate Numerosity in the Human Intraparietal Sulcus , 2004, Neuron.

[35]  J B Poline,et al.  Letter Binding and Invariant Recognition of Masked Words , 2004, Psychological science.

[36]  M. Thioux,et al.  Neuroanatomical Substrates of Arabic Number Processing, Numerical Comparison, and Simple Addition: A PET Study , 2000, Journal of Cognitive Neuroscience.

[37]  S. Dehaene,et al.  The priming method: imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. , 2001, Cerebral cortex.

[38]  Andreas Nieder,et al.  A parieto-frontal network for visual numerical information in the monkey. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B. Mazoyer,et al.  Neural Correlates of Simple and Complex Mental Calculation , 2001, NeuroImage.